Project 4, Dweik) Hyaluronan in Pulmonary Hypertension - Idiopathic pulmonary arterial hypertension (IPAH) is a progressive disease that leads to deterioration in cardiopulmonary function and premature death from right ventricular failure. The pathogenesis of IPAH is not fully understood. Although pulmonary artery smooth muscle cells (PASMCs) are considered a major component of the remodeling process in IPAH, the nature of the primary abnormality that triggers and perpetuates PASMC proliferation in IPAH is unclear. We have recently discovered and reported the novel finding that PASMCs from IPAH lungs spontaneously produce high levels of hyaluronan (HA) and that IPAH patients have higher than normal levels of circulating HA in their blood. We hypothesize that abnormalities in HA amount, modification, and fragmentation result in major regulatory switches directing abnormal smooth muscle cell proliferation, inflammation and vascular remodeling in IPAH.
Our specific aims are designed to assess the mechanisms of increased HA production and the regulatory role(s) HA has in perpetuating PASMC proliferation, inflammation, and vascular remodeling in IPAH.
Specific Aim 1 : Define the mechanism(s) regulating HA production in PASMCs in IPAH. We will evaluate the expression of the different Has and Hyal mRNAs and proteins from PASMCs isolated from lungs of IPAH patients and controls, as well as for smooth muscle cells (SMCs) from other sources, and for other cell types to ascertain the uniqueness of the PASMCs. We will also determine if there are genetic or epigenetic abnormalities regulating HA production in these cells.
Specific Aim 2 : Determine the role(s) of HA in IPAH. We will accomplish this Aim by studying the functional consequences of the high levels of HA in vascular SMC proliferation and inflammation in IPAH in vivo and ex vivo. We will also correlate HA levels with disease outcomes in patients with IPAH.
Specific Aim 3 : Uncover the mechanlsm(s) responsible for the proliferative and pro-inflammatory functions of HA in IPAH. We will study this by evaluating the specific HA modification(s) that turn this primarily structural molecule under normal physiological conditions into a molecule that stimulates cell proliferation and inflammation in the IPAH lung.

Public Health Relevance

While it is currently recognized that cell proliferation and vascular remodeling are very important processes in the pathogenesis of IPAH, they remain poorly understood. The work proposed here will have a major impact not only on our understanding of the pathobiology of remodeling and cell proliferation in IPAH, but also on the development of better ways to diagnose, monitor and ultimately treat/cure IPAH.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL107147-04
Application #
8669089
Study Section
Special Emphasis Panel (ZHL1-CSR-H)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
4
Fiscal Year
2014
Total Cost
$351,764
Indirect Cost
$127,326
Name
Cleveland Clinic Lerner
Department
Type
DUNS #
135781701
City
Cleveland
State
OH
Country
United States
Zip Code
44195
Hope, Chelsea; Foulcer, Simon; Jagodinsky, Justin et al. (2016) Immunoregulatory roles of versican proteolysis in the myeloma microenvironment. Blood 128:680-5
Benz, Brian A; Nandadasa, Sumeda; Takeuchi, Megumi et al. (2016) Genetic and biochemical evidence that gastrulation defects in Pofut2 mutants result from defects in ADAMTS9 secretion. Dev Biol 416:111-22
Dong, Yifei; Arif, Arif; Olsson, Mia et al. (2016) Endotoxin free hyaluronan and hyaluronan fragments do not stimulate TNF-α, interleukin-12 or upregulate co-stimulatory molecules in dendritic cells or macrophages. Sci Rep 6:36928
Abbadi, Amina; Lauer, Mark; Swaidani, Shadi et al. (2016) Hyaluronan Rafts on Airway Epithelial Cells. J Biol Chem 291:1448-55
Apte, Suneel S (2016) Anti-ADAMTS5 monoclonal antibodies: implications for aggrecanase inhibition in osteoarthritis. Biochem J 473:e1-4
Petrey, Aaron C; Obery, Dana R; Kessler, Sean P et al. (2016) Hyaluronan Depolymerization by Megakaryocyte Hyaluronidase-2 Is Required for Thrombopoiesis. Am J Pathol 186:2390-403
Janssen, Lauriane; Dupont, Laura; Bekhouche, Mourad et al. (2016) ADAMTS3 activity is mandatory for embryonic lymphangiogenesis and regulates placental angiogenesis. Angiogenesis 19:53-65
Soroosh, Artin; Albeiroti, Sami; West, Gail A et al. (2016) Crohn's Disease Fibroblasts Overproduce the Novel Protein KIAA1199 to Create Proinflammatory Hyaluronan Fragments. Cell Mol Gastroenterol Hepatol 2:358-368.e4
Matuska, Brittany; Comhair, Suzy; Farver, Carol et al. (2016) Pathological Hyaluronan Matrices in Cystic Fibrosis Airways and Secretions. Am J Respir Cell Mol Biol 55:576-585
Petrey, Aaron C; de la Motte, Carol A (2016) Thrombin Cleavage of Inter-α-inhibitor Heavy Chain 1 Regulates Leukocyte Binding to an Inflammatory Hyaluronan Matrix. J Biol Chem 291:24324-24334

Showing the most recent 10 out of 90 publications