OVERVIEW OF GLYCAN ANALYSIS COMPONENT: Glycans play key roles in biological processes relevant to inflammation, such as cell-cell recognition, cell migration, and signal transduction. In order to understand glycan function in inflammation, it is essential to have an in-depth knowledge of glycan structural diversity in various cell types. Because enormous structural diversity exists in naturally occurring glycans, it has proven difficult to devise a universal protocol for glycan analysis. Moreover, sample complexity makes the isolation and purification of cell surface glycans a major methodological challenge. The analytical component of Core B will work within the framework of the Glycotechnology Core Resource at UCSD, a well-known center for providing specialized glycan analysis (glycotech.ucsd.edu). The Glycotechnology Core Resource was established in 1993 and since then has provided analytical support to a large number of investigators. Over the years, the Resource has developed skills to isolate, purify and structurally characterize polysaccharides or oligosaccharides from samples with limited amounts of analyte in the presence of a large background of complex biological contaminants. The state-of-the-art instrumentation coupled with many years of analytical experience will ensure that the analytic needs of the proposed Projects will be met. Besides carrying out custom analyses, the Resource has also trained graduate students, postdoctoral fellows, and principal investigators in glycan analytical techniques. Thus, the analytical group of Core B will also participate In the training program described in Core A, as well as perform glycan analyses for the individual Projects. Table 1 describes analytical techniques that will be used by the Projects.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL107150-03
Application #
8477266
Study Section
Special Emphasis Panel (ZHL1-CSR-H)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
3
Fiscal Year
2013
Total Cost
$216,587
Indirect Cost
$43,093
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Gordts, Philip L S M; Nock, Ryan; Son, Ni-Huiping et al. (2016) ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. J Clin Invest 126:2855-66
Varki, Ajit (2016) Biological Roles of Glycans. Glycobiology :
Yamaguchi, Masaya; Hirose, Yujiro; Nakata, Masanobu et al. (2016) Evolutionary inactivation of a sialidase in group B Streptococcus. Sci Rep 6:28852
Secundino, Ismael; Lizcano, Anel; Roupé, K Markus et al. (2016) Host and pathogen hyaluronan signal through human siglec-9 to suppress neutrophil activation. J Mol Med (Berl) 94:219-33
Thacker, Bryan E; Seamen, Emylie; Lawrence, Roger et al. (2016) Expanding the 3-O-Sulfate Proteome--Enhanced Binding of Neuropilin-1 to 3-O-Sulfated Heparan Sulfate Modulates Its Activity. ACS Chem Biol 11:971-80
Zhang, Ling-Juan; Sen, George L; Ward, Nicole L et al. (2016) Antimicrobial Peptide LL37 and MAVS Signaling Drive Interferon-β Production by Epidermal Keratinocytes during Skin Injury. Immunity 45:119-30
Schwarz, Flavio; Springer, Stevan A; Altheide, Tasha K et al. (2016) Human-specific derived alleles of CD33 and other genes protect against postreproductive cognitive decline. Proc Natl Acad Sci U S A 113:74-9
Sato, Emi; Muto, Jun; Zhang, Ling-Juan et al. (2016) The Parathyroid Hormone Second Receptor PTH2R and its Ligand Tuberoinfundibular Peptide of 39 Residues TIP39 Regulate Intracellular Calcium and Influence Keratinocyte Differentiation. J Invest Dermatol 136:1449-59
Miles, L A; Baik, N; Lighvani, S et al. (2016) Deficiency of Plasminogen Receptor, Plg-RKT, Causes Defects in Plasminogen Binding and Inflammatory Macrophage Recruitment in vivo. J Thromb Haemost :
Zaiss, Anne K; Foley, Erin M; Lawrence, Roger et al. (2016) Hepatocyte Heparan Sulfate Is Required for Adeno-Associated Virus 2 but Dispensable for Adenovirus 5 Liver Transduction In Vivo. J Virol 90:412-20

Showing the most recent 10 out of 59 publications