The objective of the Glycosciences Skills Development Core (Core A) is to provide training to postgraduate level scienfists (PhD, MD, MD/PhD), with the specific goal of developing their knowledge and skills in the glycosciences necessary to carry out basic and translational research relevant to the mission of the National Heart, Lung, and Blood Institute. The Core will create learning resources and train a cadre of "scientifically bilingual" investigators fluent in glycan chemistry and biology and capable of conducfing multidisciplinary research. The Skills Development Core will provide mentored research experiences including hands-on and didacfic training in basic glycosciences, with clinical correlafions and biotechnology applications. The ulfimate objective is to increase the number of highly trained and highly committed investigators pursuing careers in the glycosciences in academia, medicine, or the private sector. Towards this goal. Core A will train four to six Fellows at any one time and will also help mentor three junior faculty with interests in areas related to the glycosciences. Dr. Jeffrey D. Esko, Leader for Project 3, will also lead Core A with support through the existing infrastructure ofthe Glycobiology Research and Training Center at UCSD (GRTC;

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-H)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
La Jolla
United States
Zip Code
Schommer, Nina N; Muto, Jun; Nizet, Victor et al. (2014) Hyaluronan breakdown contributes to immune defense against group A Streptococcus. J Biol Chem 289:26914-21
Lin, Ann E; Autran, Chloe A; Espanola, Sophia D et al. (2014) Human milk oligosaccharides protect bladder epithelial cells against uropathogenic Escherichia coli invasion and cytotoxicity. J Infect Dis 209:389-98
Mooij, H L; Cabrales, P; Bernelot Moens, S J et al. (2014) Loss of function in heparan sulfate elongation genes EXT1 and EXT 2 results in improved nitric oxide bioavailability and endothelial function. J Am Heart Assoc 3:e001274
Padler-Karavani, Vered; Hurtado-Ziola, Nancy; Chang, Yung-Chi et al. (2014) Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates. FASEB J 28:1280-93
Muto, Jun; Morioka, Yasuhide; Yamasaki, Kenshi et al. (2014) Hyaluronan digestion controls DC migration from the skin. J Clin Invest 124:1309-19
Xu, Ding; Esko, Jeffrey D (2014) Demystifying heparan sulfate-protein interactions. Annu Rev Biochem 83:129-57
Thacker, Bryan E; Xu, Ding; Lawrence, Roger et al. (2014) Heparan sulfate 3-O-sulfation: a rare modification in search of a function. Matrix Biol 35:60-72
Chang, Yung-Chi; Olson, Joshua; Beasley, Federico C et al. (2014) Group B Streptococcus engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo. PLoS Pathog 10:e1003846
van Sorge, Nina M; Cole, Jason N; Kuipers, Kirsten et al. (2014) The classical lancefield antigen of group a Streptococcus is a virulence determinant with implications for vaccine design. Cell Host Microbe 15:729-40
Zhang, Bing; Xiao, Wenyuan; Qiu, Hong et al. (2014) Heparan sulfate deficiency disrupts developmental angiogenesis and causes congenital diaphragmatic hernia. J Clin Invest 124:209-21

Showing the most recent 10 out of 21 publications