Cell surface glycans and complementary glycan binding proteins are intimately involved in inflammatory processes. Members of this Program team and others discovered that certain members of the siglec family of glycan binding proteins are inhibitors of inflammation. This Lung Inflammatory Disease Program of Excellence in Glycosciences (LID-PEG) focuses on the anti-inflammatory functions of siglecs and their glycan counter-receptors (ligands) in moderating ongoing inflammation in the lung. THEME: Specific glycans expressed on lung tissues engage complementary glycan binding proteins (Siglec-8, Siglec-9, Siglec-1) on inflammatory cells to limit lung inflammation. Knowledge of the glycan structures and glycan binding proteins involved, the control of their expression, and the mechanisms responsible for translating glycan engagement into regulation of the inflammatory response will provide new insights into the progression of inflammatory lung diseases. Synthetic glycan-decorated nanoparticles and antibodies that target glycan binding proteins on inflammatory cells will limit inflammatory damage. The insights gained may lead to novel diagnostic tools and therapeutic compositions that treat inflammatory diseases of the lung and other tissues relevant to the goals of the NHLBI. Four closely integrated Projects and two Cores at three major glycobiology centers will coordinate efforts to reach the Project goals: Project 1, "Treating lung inflammation by targeting siglecs" (B. Bochner, Johns Hopkins);Project 2, "Siglec-targeted nanoparticles for lung and cardiovascular disease" (J. Paulson, Scripps);Project 3, "Human lung counter-receptors for Siglec-8 and Siglec-9" (R. Schnaar, Johns Hopkins);Project 4, "Regulated expression of siglec counter-receptors" (M. Tiemeyer, CCRC/U. Georgia);Core C, "Shared Resources Core: Carbohydrate Synthesis" (J. Paulson, Scripps);and Core D, "Inflammatory Animal Models Core" (Z. Zhu, Johns Hopkins). The Program is supported by an Administrative Core (Core A) and a Skills Development Core (Core B) that provides trainees with diverse experiences at the three centers. This Program will provide novel insights into the glycosciences of lung inflammatory diseases.

Public Health Relevance

Asthma and Chronic Obstructive Pulmonary Disease (COPD), lung diseases that cause extensive illness and death, involve infiltration of damaging inflammatory cells. Normally, sugar molecules in the lung engage complementary sugar binding molecules on inflammatory cells, signaling them to halt and limiting tissue damage. This project defines anti-inflammatory sugar molecules and uses them to develop new treatments.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-H (F1))
Program Officer
Caler, Elisabet V
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Schools of Medicine
United States
Zip Code
Stowell, Sean R; Arthur, Connie M; McBride, Ryan et al. (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10:470-6
Kawasaki, Norihito; Rillahan, Cory D; Cheng, Tan-Yun et al. (2014) Targeted delivery of mycobacterial antigens to human dendritic cells via Siglec-7 induces robust T cell activation. J Immunol 193:1560-6
Kiwamoto, Takumi; Brummet, Mary E; Wu, Fan et al. (2014) Mice deficient in the St3gal3 gene product *2,3 sialyltransferase (ST3Gal-III) exhibit enhanced allergic eosinophilic airway inflammation. J Allergy Clin Immunol 133:240-7.e1-3
Macauley, Matthew S; Crocker, Paul R; Paulson, James C (2014) Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 14:653-66
Cho, Seok Hyun; Oh, Sun Young; Lane, Andrew P et al. (2014) Regulation of nasal airway homeostasis and inflammation in mice by SHP-1 and Th2/Th1 signaling pathways. PLoS One 9:e103685
Fang, Ping; Zhou, Li; Zhou, Yuqi et al. (2014) Immune modulatory effects of IL-22 on allergen-induced pulmonary inflammation. PLoS One 9:e107454
Nix, David B; Kumagai, Tadahiro; Katoh, Toshihiko et al. (2014) Improved in-gel reductive ?-elimination for comprehensive O-linked and sulfo-glycomics by mass spectrometry. J Vis Exp :e51840
Rillahan, Cory D; Macauley, Matthew S; Schwartz, Erik et al. (2014) Disubstituted Sialic Acid Ligands Targeting Siglecs CD33 and CD22 Associated with Myeloid Leukaemias and B Cell Lymphomas. Chem Sci 5:2398-2406
Kiwamoto, Takumi; Katoh, Toshihiko; Tiemeyer, Michael et al. (2013) The role of lung epithelial ligands for Siglec-8 and Siglec-F in eosinophilic inflammation. Curr Opin Allergy Clin Immunol 13:106-11
Rillahan, Cory D; Schwartz, Erik; Rademacher, Christoph et al. (2013) On-chip synthesis and screening of a sialoside library yields a high affinity ligand for Siglec-7. ACS Chem Biol 8:1417-22

Showing the most recent 10 out of 15 publications