Asthma and chronic obstructive pulmonary disease (COPD) involve accumulation and activation of inflammatory cells in the lung. Inflammation in asthma is marked by the influx of eosinophils, mast cells, and CD4+ T-cells whereas COPD is marked by the influx of neutrophils, macrophages and CD8+ T-cells. Members of the Siglec family of glycan binding proteins (sialic acid-binding immunoglobulin-like lectins) are expressed selectively on subsets of inflammatory cells: Siglec-8 on allergic inflammatory cells (eosinophils, mast cells and basophils) and Siglec-9 on monocytes, neutrophils, and some T-cells. Both Siglec-8 and Siglec-9 suppress inflammation. Crosslinking siglecs on inflammatory cells inhibits release of proinflammatory mediators, enhances release of anti-inflammatory mediators, or induces apoptosis/death, depending on the inflammatory cell type. HYPOTHESIS: Glycoconjugate ligands (siglec counter-receptors) in the lung, consisting of endogenous glycoproteins and/or glycolipids, engage Siglec-8 on incoming allergic inflammatory cells and Siglec 9 on COPD inflammatory cells as a feedback mechanism to limit ongoing inflammatory responses.
AIMS : This project will isolate, identify and characterize the human lung counter- receptors for Siglec-8 and Siglec-9. Glycoconjugates (glycoproteins and/or glycolipids) will be extracted from human lung and the major siglec-binding entities will be isolated by conventional, lectin, and Siglec affinity chromatography. The resulting siglec-interacting molecules will be analyzed by mass spectrometry in collaboration with Project 4 of this program. The expression of counter-receptors will be characterized on cultured human lung epithelial and/or endothelial cells and the enzymes responsible for their biosynthesis will be determined by RNAi knockdown. Siglec counter-receptor expression will be compared on normal and diseased human nasal epithelium. The properties of counter-receptors on mouse lung epithelium will be compared with those from human lung. Knowledge of the endogenous human lung counter-receptors for Siglec-8 and Siglec-9 may provide insights useful in understanding the progression of lung inflammatory diseases and may provide improved lead structures for anti-inflammatory therapeutics.

Public Health Relevance

Asthma and COPD, lung diseases that cause extensive illness and death, involve infiltration of damaging inflammatory cells. Normally, sugar molecules in the lung engage complementary molecules on inflammatory cells, signaling them to halt and limiting tissue damage. This project will define those anti-inflammatory sugar molecules in an effort to better understand lung inflammatory diseases and to find new ways to treat them.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-H)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
Stowell, Sean R; Arthur, Connie M; McBride, Ryan et al. (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10:470-6
Kawasaki, Norihito; Rillahan, Cory D; Cheng, Tan-Yun et al. (2014) Targeted delivery of mycobacterial antigens to human dendritic cells via Siglec-7 induces robust T cell activation. J Immunol 193:1560-6
Kiwamoto, Takumi; Brummet, Mary E; Wu, Fan et al. (2014) Mice deficient in the St3gal3 gene product *2,3 sialyltransferase (ST3Gal-III) exhibit enhanced allergic eosinophilic airway inflammation. J Allergy Clin Immunol 133:240-7.e1-3
Macauley, Matthew S; Crocker, Paul R; Paulson, James C (2014) Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 14:653-66
Cho, Seok Hyun; Oh, Sun Young; Lane, Andrew P et al. (2014) Regulation of nasal airway homeostasis and inflammation in mice by SHP-1 and Th2/Th1 signaling pathways. PLoS One 9:e103685
Fang, Ping; Zhou, Li; Zhou, Yuqi et al. (2014) Immune modulatory effects of IL-22 on allergen-induced pulmonary inflammation. PLoS One 9:e107454
Nix, David B; Kumagai, Tadahiro; Katoh, Toshihiko et al. (2014) Improved in-gel reductive ?-elimination for comprehensive O-linked and sulfo-glycomics by mass spectrometry. J Vis Exp :e51840
Rillahan, Cory D; Macauley, Matthew S; Schwartz, Erik et al. (2014) Disubstituted Sialic Acid Ligands Targeting Siglecs CD33 and CD22 Associated with Myeloid Leukaemias and B Cell Lymphomas. Chem Sci 5:2398-2406
Kiwamoto, Takumi; Katoh, Toshihiko; Tiemeyer, Michael et al. (2013) The role of lung epithelial ligands for Siglec-8 and Siglec-F in eosinophilic inflammation. Curr Opin Allergy Clin Immunol 13:106-11
Rillahan, Cory D; Schwartz, Erik; Rademacher, Christoph et al. (2013) On-chip synthesis and screening of a sialoside library yields a high affinity ligand for Siglec-7. ACS Chem Biol 8:1417-22

Showing the most recent 10 out of 15 publications