The Lung Inflammatory Disease Program of Excellence in Glycosciences (LID-PEG) has Projects and Cores at three institutions and a breadth of capabilities ranging from chemistry to preclinical therapeutic models. With this diversity, communications will be a key to LID-PEG progress and success. A major role in effective communication will be provided by Core A, the Administrative Core. Core A will take responsibility for inter-program communications both through web-based video conferencing and face-to-face meetings. The Core will coordinate and oversee the regular video-conference meetings of the Executive Committee, organize the annual Program Group Meeting (which will rotate among the three sites), organize meetings of the LID-PEG with its Internal and External advisory boards and support LID-PEG participation in the annual Investigator's meeting in Bethesda. In addition to travel planning and reimbursement for LID-PEG meeting participants. Core A will coordinate communications with NHLBI and the Administrative Center, manage budgets and fulfill NIH reporting requirements.

Public Health Relevance

This Program brings together scientists from across the country to combine diverse expertise in glycosciences with the goal of discovering new therapies for asthma, COPD and other lung and cardiovascular inflammatory diseases. Effective communication is essential to this goal, and Core A will take the lead in ensuring efficient communications among LID-PEG members.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL107151-03
Application #
8477259
Study Section
Special Emphasis Panel (ZHL1-CSR-H)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
3
Fiscal Year
2013
Total Cost
$145,858
Indirect Cost
$57,398
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Janssen, William J; Stefanski, Adrianne L; Bochner, Bruce S et al. (2016) Control of lung defence by mucins and macrophages: ancient defence mechanisms with modern functions. Eur Respir J 48:1201-1214
McBride, Ryan; Paulson, James C; de Vries, Robert P (2016) A Miniaturized Glycan Microarray Assay for Assessing Avidity and Specificity of Influenza A Virus Hemagglutinins. J Vis Exp :
Schnaar, Ronald L (2016) Gangliosides of the Vertebrate Nervous System. J Mol Biol 428:3325-36
Gicheva, Nadezhda; Macauley, Matthew S; Arlian, Britni M et al. (2016) Siglec-F is a novel intestinal M cell marker. Biochem Biophys Res Commun 479:1-4
Schleimer, Robert P; Schnaar, Ronald L; Bochner, Bruce S (2016) Regulation of airway inflammation by Siglec-8 and Siglec-9 sialoglycan ligand expression. Curr Opin Allergy Clin Immunol 16:24-30
Schnaar, Ronald L (2016) Glycobiology simplified: diverse roles of glycan recognition in inflammation. J Leukoc Biol 99:825-38
Cheng, Chu-Wen; Chou, Chi-Chi; Hsieh, Hsiao-Wu et al. (2015) Efficient Mapping of Sulfated Glycotopes by Negative Ion Mode nanoLC-MS/MS-Based Sulfoglycomic Analysis of Permethylated Glycans. Anal Chem 87:6380-8
Bochner, Bruce S; Zimmermann, Nives (2015) Role of siglecs and related glycan-binding proteins in immune responses and immunoregulation. J Allergy Clin Immunol 135:598-608
Kiwamoto, Takumi; Katoh, Toshihiko; Evans, Christopher M et al. (2015) Endogenous airway mucins carry glycans that bind Siglec-F and induce eosinophil apoptosis. J Allergy Clin Immunol 135:1329-40.e1-9
Schnaar, Ronald L (2015) Glycans and glycan-binding proteins in immune regulation: A concise introduction to glycobiology for the allergist. J Allergy Clin Immunol 135:609-15

Showing the most recent 10 out of 51 publications