The shared services Core will synthesize sialic acid containing ligands of siglecs that are needed for the projects of the Lung Inflammatory Disease- Program of Excellence in Glycosciences (LID-PEG) and other PEGs. The core will accomplish its goals using chemo-enzymatic synthesis technology assembled and in routine use in the Core Leader's laboratory. Compounds targeted for synthesis in the first year will be those needed by the LID-PEG projects. Envisioned applications of the compounds include: 1) assaying the ligand binding activity of recombinant siglec reagents, 2) development of siglec-ligand decorated nanoparticles for targeting leukocytes expressing the corresponding siglec, 3) isolation of siglec counter- receptors, and 4) use as standards for MS/MS identification of glycan fragments related to siglec ligands. The Core will also synthesize compounds to meet the needs of other PEGs, and will engage in collaborative synthesis with carbohydrate chemistry groups within the PEGs for products that can benefit from the Core technology. The Executive Committee of the LID-PEG will periodically review and prioritize the list of glycans to be produced by the Shared Resources Core C. Once produced, compounds will be distributed to the LID-PEG and other PEG projects upon request. Compounds will also be made available to investigators outside the PEGs. The list of compounds available from the Core will be posted online at the LID-PEG web site and (preferably) also at the central PEG website.

Public Health Relevance

This shared resource core will synthesize carbohydrates that are recognized by receptors on immune cells. Nanoparticles decorated with these compounds can carry cargo to immune cells for diagnosis and treatment of inflammatory diseases of the lung and cardiovascular system.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-H)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
Stowell, Sean R; Arthur, Connie M; McBride, Ryan et al. (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10:470-6
Kawasaki, Norihito; Rillahan, Cory D; Cheng, Tan-Yun et al. (2014) Targeted delivery of mycobacterial antigens to human dendritic cells via Siglec-7 induces robust T cell activation. J Immunol 193:1560-6
Kiwamoto, Takumi; Brummet, Mary E; Wu, Fan et al. (2014) Mice deficient in the St3gal3 gene product *2,3 sialyltransferase (ST3Gal-III) exhibit enhanced allergic eosinophilic airway inflammation. J Allergy Clin Immunol 133:240-7.e1-3
Macauley, Matthew S; Crocker, Paul R; Paulson, James C (2014) Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 14:653-66
Cho, Seok Hyun; Oh, Sun Young; Lane, Andrew P et al. (2014) Regulation of nasal airway homeostasis and inflammation in mice by SHP-1 and Th2/Th1 signaling pathways. PLoS One 9:e103685
Fang, Ping; Zhou, Li; Zhou, Yuqi et al. (2014) Immune modulatory effects of IL-22 on allergen-induced pulmonary inflammation. PLoS One 9:e107454
Nix, David B; Kumagai, Tadahiro; Katoh, Toshihiko et al. (2014) Improved in-gel reductive ?-elimination for comprehensive O-linked and sulfo-glycomics by mass spectrometry. J Vis Exp :e51840
Rillahan, Cory D; Macauley, Matthew S; Schwartz, Erik et al. (2014) Disubstituted Sialic Acid Ligands Targeting Siglecs CD33 and CD22 Associated with Myeloid Leukaemias and B Cell Lymphomas. Chem Sci 5:2398-2406
Kiwamoto, Takumi; Katoh, Toshihiko; Tiemeyer, Michael et al. (2013) The role of lung epithelial ligands for Siglec-8 and Siglec-F in eosinophilic inflammation. Curr Opin Allergy Clin Immunol 13:106-11
Rillahan, Cory D; Schwartz, Erik; Rademacher, Christoph et al. (2013) On-chip synthesis and screening of a sialoside library yields a high affinity ligand for Siglec-7. ACS Chem Biol 8:1417-22

Showing the most recent 10 out of 15 publications