The purpose of the Cardiac and Myocyte Physiology Core D is to provide required methods for the evaluation of the effects of glycoconjugate modifications on myocyte, muscle fiber, and intact heart physiology. Two in vitro methods and two non-invasive in vivo methods are employed. For Projects 1, 2 and 3, we will use isolated adult myocytes to determine the impact of protein modification on sarcomere shortening and relaxation, and on the whole cell calcium transient. Resting and adrenergic stimulated cells are studied. Myocyte isolation from adult heart models also are provided to the project for molecular studies and for the isolation of mitochondria. For Projects 2 and 3 we will provide isolated heart Langendorff preparations, to define organ function, and to provide tissue for additional analysis using models of ischemia/reperfusion and preconditioning. For Projects 1 and 5, the Core will determine cardiac function using non-invasive echo-Doppler imaging analysis over a fime-line for the animal models used. Mouse models of atherosclerosis on varying diets are a major focus of this analysis. Lastly, for Projects 2 and 3, we will determine vascular properties such as large artery stiffness using Doppler imaging of aortic flow at two locations and determination of pulse wave velocity. We have a wide variety of state-of-the-art methods to evaluate cardiac functions and some of the specific studies will be determined by the inifial data obtained.

Public Health Relevance

Core D provides important physiologic assessment of the glycoconjugate modifications to be studied in the Program. Glycoproteins and glycolipids are thought to impact vascular and cardiac physiology, contributing to features of both heart and vessel disease. Determination of the physiology of both systems, as appropriate for the model studied will be an important component of the Program's overall research strategy.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-H)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
Zhu, Guangshuo; Groneberg, Dieter; Sikka, Gautam et al. (2015) Soluble guanylate cyclase is required for systemic vasodilation but not positive inotropy induced by nitroxyl in the mouse. Hypertension 65:385-92
Bullen, John W; Balsbaugh, Jeremy L; Chanda, Dipanjan et al. (2014) Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J Biol Chem 289:10592-606
Wang, Xiangchun; Chen, Jing; Li, Qing Kay et al. (2014) Overexpression of ? (1,6) fucosyltransferase associated with aggressive prostate cancer. Glycobiology 24:935-44
Hardivillé, Stéphan; Hart, Gerald W (2014) Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab 20:208-13
Hascall, Vincent C; Wang, Aimin; Tammi, Markku et al. (2014) The dynamic metabolism of hyaluronan regulates the cytosolic concentration of UDP-GlcNAc. Matrix Biol 35:14-7
Aiyetan, Paul; Zhang, Bai; Chen, Lily et al. (2014) M2Lite: An Open-source, Light-weight, Pluggable and Fast Proteome Discoverer MSF to mzIdentML Tool. J Bioinform 1:40-49
Harlan, Robert; Zhang, Hui (2014) Targeted proteomics: a bridge between discovery and validation. Expert Rev Proteomics 11:657-61
Seo, Kinya; Rainer, Peter P; Lee, Dong-Ik et al. (2014) Hyperactive adverse mechanical stress responses in dystrophic heart are coupled to transient receptor potential canonical 6 and blocked by cGMP-protein kinase G modulation. Circ Res 114:823-32
Liu, Yansheng; Chen, Jing; Sethi, Atul et al. (2014) Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol Cell Proteomics 13:1753-68
Sun, Shisheng; Zhou, Jian-Ying; Yang, Weiming et al. (2014) Inhibition of protein carbamylation in urea solution using ammonium-containing buffers. Anal Biochem 446:76-81

Showing the most recent 10 out of 40 publications