Asthma is a major public health problem in the United States affecting over 23 million Americans and costing US society $56 billion annually. Despite advances in treatment of asthma, there remains significant unmet therapeutic need, and large subgroups of asthmatics have poor asthma control despite current asthma treatment. Consequently, asthma exacerbations, often precipitated by viral airway infections, continue to result in 2 million emergency room visits a year in the US. The largest molecular phenotype of asthma Is one that is driven by TH2 inflammation and characterized by eosinophilic inflammation, and the project proposed here focuses on clinical studies ofthe mechanisms of TH2 inflammation, including how TH2 inflammation can be amplified during viral-Induced asthma exacerbations. A key rationale for the research aims we propose here Is the increasing recognition that signals from the epithelium to innate cells contribute Importantly to mechanisms of airway Inflammation. The signals we propose to focus on are IL-33 and Its receptor (ST2) and the interactions of IL-33 with ST2-bearing innate helper type 2 cells (iH2) cells, a novel lineage-negative population of cells that secrete IL-5 and IL-13 In response to IL-33. iH2 cells represent a novel cellular source of TH2 cytokines and a cell type that this PPG hypothesizes to have a central role In mechanisms of airway TH2 Inflammation in asthma. Coincident with recent discoveries about iH2 cells has been publication of GWAS studies showing that genetic polymorphisms in IL-33 and ST2 are among a relatively short list of genes consistently associated with asthma. All of these new data suggest new ways by which airway epithelial cells can initiate and amplify type 2 Immune responses In the airway, and we will explore these new possibilities in three aims:
Aim 1 will determine the role of IH2 cells as cellular mediators of TH2 inflammation.
Aim 2 will determine how IL-33 regulates airway TH2 Inflammation during asthma exacerbations.
Aim 3 will determine how genetic variants in ST2 Influence airway TH2 inflammation. In tackling these alms we will advance knowledge for mechanisms of airway TH2 Inflammation in asthma.

Public Health Relevance

Asthma is a common disease and a major public health problem. It cannot be cured and many patients are not optimally controlled using current treatments. Our project will help advance understanding of basic mechanisms of airway Inflammation in patients with asthma and help Identify new approaches for treatment.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
San Francisco
United States
Zip Code
Mohapatra, A; Van Dyken, S J; Schneider, C et al. (2016) Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis. Mucosal Immunol 9:275-86
Gordon, Erin D; Locksley, Richard M; Fahy, John V (2016) Cross-Talk between Epithelial Cells and Type 2 Immune Signaling. The Role of IL-25. Am J Respir Crit Care Med 193:935-6
von Moltke, Jakob; Ji, Ming; Liang, Hong-Erh et al. (2016) Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529:221-5
Fahy, John V (2016) Asthma Was Talking, But We Weren't Listening. Missed or Ignored Signals That Have Slowed Treatment Progress. Ann Am Thorac Soc 13 Suppl 1:S78-82
Pua, Heather H; Steiner, David F; Patel, Sana et al. (2016) MicroRNAs 24 and 27 Suppress Allergic Inflammation and Target a Network of Regulators of T Helper 2 Cell-Associated Cytokine Production. Immunity 44:821-32
Wesolowska-Andersen, Agata; Seibold, Max A (2016) Is the Road to Precision Medicine in Chronic Lung Disease Paved with Degraded Chitin? Am J Respir Crit Care Med 193:107-8
Gordon, Erin D; Simpson, Laura J; Rios, Cydney L et al. (2016) Alternative splicing of interleukin-33 and type 2 inflammation in asthma. Proc Natl Acad Sci U S A 113:8765-70
Gordon, Erin D; Palandra, Joe; Wesolowska-Andersen, Agata et al. (2016) IL1RL1 asthma risk variants regulate airway type 2 inflammation. JCI Insight 1:e87871
Reber, Laurent L; Fahy, John V (2016) Mast cells in asthma: biomarker and therapeutic target. Eur Respir J 47:1040-2
Ramstein, Joris; Broos, Caroline E; Simpson, Laura J et al. (2016) IFN-γ-Producing T-Helper 17.1 Cells Are Increased in Sarcoidosis and Are More Prevalent than T-Helper Type 1 Cells. Am J Respir Crit Care Med 193:1281-91

Showing the most recent 10 out of 61 publications