Sepsis is a disease process representing the systemic response to severe infection. The infectious insult activates immune cells of the host, including neutrophils, monocytes/macrophages, and lymphocytes. Early activation of immune cells triggers a pro-inflammatory response that contributes to eradication of the invading microorganism(s). If the pathogens are not eradicated, sepsis may progress to severe sepsis (sepsis plus organ dysfunction, such as lung injury and respiratory failure) and septic shock (severe sepsis plus refractory hypotension and circulatory failure), which frequently leads to death. Once the invading microorganism(s) are eradicated, then resolution of the immune response is critical, as continued systemic inflammation will lead to organ injury. Unfortunately, this early pro-inflammatory response may also be followed by a later state of immunoparalysis, due in part to apoptosis of immune effector cells. The cascade of biologic events that occur during sepsis is complex, and therapeutic strategies need to be tailored depending upon the stage of sepsis at the time of diagnosis. Multipotent mesenchymal stromal cells (MSCs) are considered to be a promising platform for cell-based therapy. MSCs are known to have immunomodulatory properties, and recently it has been suggested that MSCs are beneficial during the early proinflammatory stage of cecal ligation and puncture in mice. We hypothesize that MSCs, when administered to mice after the onset of polymicrobial or single organism sepsis, will adapt to the specific stage of sepsis and lead to an improved outcome. Prior studies in our laboratory demonstrated that heme oxygenase (H0)-1-derived carbon monoxide (CO), a known anti-inflammatory molecule, also has anti-microbial properties during sepsis. Thus, we also hypothesize that conditioning MSCs with CO ex vivo will improve their function In vivo, and increase the beneficial effects of MSCs after the onset of sepsis in mice. Gaining insight into the mechanisms responsible for this enhanced response of MSCs conditioned with CO will allow us to further understand MSCs as a cell-based therapy, and to develop novel therapeutic strategies for this devastating disease process. MSCs ? CO conditioning will also be studied in mice with a """"""""humanized"""""""" immune system. Finally we will advance the understanding of the human immune response to sepsis by assessing phagocytic function of neutrophils and monocytes harvested from patients with sepsis or sepsis plus acute lung injury, compared with cells from control patients. We will determine whether the administration of MSCs ? CO ex vivo can improve phagocyte function. These functional assays will be correlated with patient outcome.

Public Health Relevance

Sepsis is a medical condition caused by an underlying infection that leads to an inflammatory process throughout the body. Although there have been intense efforts to improve the treatment of sepsis, death rates remain high in patients with this disease. This project will investigate new approaches to treating sepsis, using cell s (mesenchymal stromal cells) as a therapy, and we will also discover ways to improve the function of these cells for therapeutic benefit using the gas carbon monoxide.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL108801-03
Application #
8526534
Study Section
Special Emphasis Panel (ZHL1-PPG-A)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
3
Fiscal Year
2013
Total Cost
$443,642
Indirect Cost
$172,166
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Ryter, Stefan W; Choi, Augustine M K (2016) Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 167:7-34
Lee, Seonmin; Suh, Gee-Young; Ryter, Stefan W et al. (2016) Regulation and Function of the Nucleotide Binding Domain Leucine-Rich Repeat-Containing Receptor, Pyrin Domain-Containing-3 Inflammasome in Lung Disease. Am J Respir Cell Mol Biol 54:151-60
Piantadosi, Claude A (2016) Cardioprotective role of S-nitrosylated hemoglobin from rbc. J Clin Invest 126:4402-4403
Liu, Fei; Haeger, Christina Mallarino; Dieffenbach, Paul B et al. (2016) Distal vessel stiffening is an early and pivotal mechanobiological regulator of vascular remodeling and pulmonary hypertension. JCI Insight 1:
Tsoyi, Konstantin; Hall, Sean R R; Dalli, Jesmond et al. (2016) Carbon Monoxide Improves Efficacy of Mesenchymal Stromal Cells During Sepsis by Production of Specialized Proresolving Lipid Mediators. Crit Care Med 44:e1236-e1245
Suliman, Hagir B; Zobi, Fabio; Piantadosi, Claude A (2016) Heme Oxygenase-1/Carbon Monoxide System and Embryonic Stem Cell Differentiation and Maturation into Cardiomyocytes. Antioxid Redox Signal 24:345-60
Ghanta, Sailaja; Tsoyi, Konstantin; Liu, Xiaoli et al. (2016) Mesenchymal Stromal Cells Deficient in Autophagy Proteins are Susceptible to Oxidative Injury and Mitochondrial Dysfunction. Am J Respir Cell Mol Biol :
Nakahira, Kiichi; Pabon Porras, Maria Angelica; Choi, Augustine M K (2016) Autophagy in Pulmonary Diseases. Am J Respir Crit Care Med 194:1196-1207
Moon, Jong-Seok; Nakahira, Kiichi; Chung, Kuei-Pin et al. (2016) NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat Med 22:1002-12
Zhang, Ruoyu; Nakahira, Kiichi; Guo, Xiaoxian et al. (2016) Very Short Mitochondrial DNA Fragments and Heteroplasmy in Human Plasma. Sci Rep 6:36097

Showing the most recent 10 out of 66 publications