Sepsis is a disease process representing the systemic response to severe infection. The infectious insult activates immune cells of the host, including neutrophils, monocytes/macrophages, and lymphocytes. Early activation of immune cells triggers a pro-inflammatory response that contributes to eradication of the invading microorganism(s). If the pathogens are not eradicated, sepsis may progress to severe sepsis (sepsis plus organ dysfunction, such as lung injury and respiratory failure) and septic shock (severe sepsis plus refractory hypotension and circulatory failure), which frequently leads to death. Once the invading microorganism(s) are eradicated, then resolution of the immune response is critical, as continued systemic inflammation will lead to organ injury. Unfortunately, this early pro-inflammatory response may also be followed by a later state of immunoparalysis, due in part to apoptosis of immune effector cells. The cascade of biologic events that occur during sepsis is complex, and therapeutic strategies need to be tailored depending upon the stage of sepsis at the time of diagnosis. Multipotent mesenchymal stromal cells (MSCs) are considered to be a promising platform for cell-based therapy. MSCs are known to have immunomodulatory properties, and recently it has been suggested that MSCs are beneficial during the early proinflammatory stage of cecal ligation and puncture in mice. We hypothesize that MSCs, when administered to mice after the onset of polymicrobial or single organism sepsis, will adapt to the specific stage of sepsis and lead to an improved outcome. Prior studies in our laboratory demonstrated that heme oxygenase (HO)-1-derived carbon monoxide (CO), a known anti-inflammatory molecule, also has anti-microbial properties during sepsis. Thus, we also hypothesize that conditioning MSCs with CO ex vivo will improve their function In vivo, and increase the beneficial effects of MSCs after the onset of sepsis in mice. Gaining insight into the mechanisms responsible for this enhanced response of MSCs conditioned with CO will allow us to further understand MSCs as a cell-based therapy, and to develop novel therapeutic strategies for this devastating disease process. MSCs CO conditioning will also be studied in mice with a """"""""humanized"""""""" immune system. Finally we will advance the understanding of the human immune response to sepsis by assessing phagocytic function of neutrophils and monocytes harvested from patients with sepsis or sepsis plus acute lung injury, compared with cells from control patients. We will determine whether the administration of MSCs CO ex vivo can improve phagocyte function. These functional assays will be correlated with patient outcome.

Public Health Relevance

Sepsis is a medical condition caused by an underlying infection that leads to an inflammatory process throughout the body. Although there have been intense efforts to improve the treatment of sepsis, death rates remain high in patients with this disease. This project will investigate new approaches to treating sepsis, using cells (mesenchymal stromal cells) as a therapy, and we will also discover ways to improve the function of these cells for therapeutic benefit using the gas carbon monoxide.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL108801-04
Application #
8702221
Study Section
Special Emphasis Panel (ZHL1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02115
Schenck, Edward J; Oromendia, Clara; Torres, Lisa K et al. (2018) Rapidly Improving ARDS in Therapeutic Randomized Controlled Trials. Chest :
Schenck, Edward J; Ma, Kevin C; Murthy, Santosh B et al. (2018) Danger Signals in the ICU. Crit Care Med 46:791-798
Ghanta, Sailaja; Kwon, Min-Young; Rosas, Ivan O et al. (2018) Mesenchymal Stromal Cell Therapy: Does the Source Matter? Crit Care Med 46:343-345
Baron, Rebecca M; Kwon, Min-Young; Castano, Ana P et al. (2018) Frontline Science: Targeted expression of a dominant-negative high mobility group A1 transgene improves outcome in sepsis. J Leukoc Biol 104:677-689
Shu, Chang; Huang, He; Xu, Ying et al. (2018) Pressure Overload in Mice With Haploinsufficiency of Striated Preferentially Expressed Gene Leads to Decompensated Heart Failure. Front Physiol 9:863
Harrington, John S; Schenck, Edward J; Oromendia, Clara et al. (2018) Acute respiratory distress syndrome without identifiable risk factors: A secondary analysis of the ARDS network trials. J Crit Care 47:49-54
Siempos, Ilias I; Ma, Kevin C; Imamura, Mitsuru et al. (2018) RIPK3 mediates pathogenesis of experimental ventilator-induced lung injury. JCI Insight 3:
Rosas, Ivan O; Goldberg, Hilary J; Collard, Harold R et al. (2018) A Phase II Clinical Trial of Low-Dose Inhaled Carbon Monoxide in Idiopathic Pulmonary Fibrosis. Chest 153:94-104
Ma, Kevin C; Schenck, Edward J; Pabon, Maria A et al. (2018) The Role of Danger Signals in the Pathogenesis and Perpetuation of Critical Illness. Am J Respir Crit Care Med 197:300-309
Chen, Xi; Wang, Shaojun; Xu, Haiwei et al. (2017) Evidence for a retinal progenitor cell in the postnatal and adult mouse. Stem Cell Res 23:20-32

Showing the most recent 10 out of 85 publications