Core B (Pathology and Molecular Imaging Core) has expertise and facility that meets the need of individual projects for cardiovascular pathological studies and image analysis. It will provide standard service in routine histology and tissue processing as well as advanced microscopic analysis of isolated cells and subcellular preparations. Interacting with all the projects, the Core will develop common protocols and procedures to cell labeling, tissue processing and sectioning, immunohistochemistry, electron microscopy and cytological imaging. Preliminary data obtained from pilot studies have provided evidence supporting the feasibility of working hypothesis, histopathological research design in histopathology, and experimental protocols.

Public Health Relevance

The relevance of the Core B is that the core will provide detailed histopathological and cytopathological analyses with imaging data to characterize vascular lesions and characteristics of smooth muscle cells and contratile filaments from normals and mutants for correlation with the molecular studies being conducted in the four projects of the PPG. The information obtained will have direct relevance for understanding the pathogenesis of aortic aneurysms and the subsequent diagnosis and treatment of affected patients.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL110869-02
Application #
8536681
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
2
Fiscal Year
2013
Total Cost
$42,821
Indirect Cost
$14,649
Name
University of Texas Health Science Center Houston
Department
Type
DUNS #
800771594
City
Houston
State
TX
Country
United States
Zip Code
77225
Karimi, Ashkan; Milewicz, Dianna M (2016) Structure of the Elastin-Contractile Units in the Thoracic Aorta and How Genes That Cause Thoracic Aortic Aneurysms and Dissections Disrupt This Structure. Can J Cardiol 32:26-34
Wallace, S; Guo, D-C; Regalado, E et al. (2016) Disrupted nitric oxide signaling due to GUCY1A3 mutations increases risk for moyamoya disease, achalasia and hypertension. Clin Genet 90:351-60
Guo, Dong-chuan; Regalado, Ellen S; Gong, Limin et al. (2016) LOX Mutations Predispose to Thoracic Aortic Aneurysms and Dissections. Circ Res 118:928-34
Jondeau, Guillaume; Ropers, Jacques; Regalado, Ellen et al. (2016) International Registry of Patients Carrying TGFBR1 or TGFBR2 Mutations: Results of the MAC (Montalcino Aortic Consortium). Circ Cardiovasc Genet 9:548-558
Milewicz, Dianna; Hostetler, Ellen; Wallace, Stephanie et al. (2016) Precision medical and surgical management for thoracic aortic aneurysms and acute aortic dissections based on the causative mutant gene. J Cardiovasc Surg (Torino) 57:172-7
Abrams, Joshua; Einhorn, Zev; Seiler, Christoph et al. (2016) Graded effects of unregulated smooth muscle myosin on intestinal architecture, intestinal motility and vascular function in zebrafish. Dis Model Mech 9:529-40
Kuang, Shao-Qing; Medina-Martinez, Olga; Guo, Dong-Chuan et al. (2016) FOXE3 mutations predispose to thoracic aortic aneurysms and dissections. J Clin Invest 126:948-61
Chang, Audrey N; Kamm, Kristine E; Stull, James T (2016) Role of myosin light chain phosphatase in cardiac physiology and pathophysiology. J Mol Cell Cardiol 101:35-43
Ropars, Virginie; Yang, Zhaohui; Isabet, Tatiana et al. (2016) The myosin X motor is optimized for movement on actin bundles. Nat Commun 7:12456
Regalado, E S; Guo, D C; Santos-Cortez, R L P et al. (2016) Pathogenic FBN1 variants in familial thoracic aortic aneurysms and dissections. Clin Genet 89:719-23

Showing the most recent 10 out of 35 publications