Core B (Pathology and Molecular Imaging Core) has expertise and facility that meets the need of individual projects for cardiovascular pathological studies and image analysis. It will provide standard service in routine histology and tissue processing as well as advanced microscopic analysis of isolated cells and subcellular preparations. Interacting with all the projects, the Core will develop common protocols and procedures to cell labeling, tissue processing and sectioning, immunohistochemistry, electron microscopy and cytological imaging. Preliminary data obtained from pilot studies have provided evidence supporting the feasibility of working hypothesis, histopathological research design in histopathology, and experimental protocols.

Public Health Relevance

The relevance of the Core B is that the core will provide detailed histopathological and cytopathological analyses with imaging data to characterize vascular lesions and characteristics of smooth muscle cells and contratile filaments from normals and mutants for correlation with the molecular studies being conducted in the four projects of the PPG. The information obtained will have direct relevance for understanding the pathogenesis of aortic aneurysms and the subsequent diagnosis and treatment of affected patients.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL110869-03
Application #
8726468
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
City
Houston
State
TX
Country
United States
Zip Code
77225
Shalata, Adel; Mahroom, Mohammad; Milewicz, Dianna M et al. (2018) Fatal thoracic aortic aneurysm and dissection in a large family with a novel MYLK gene mutation: delineation of the clinical phenotype. Orphanet J Rare Dis 13:41
Regalado, Ellen S; Mellor-Crummey, Lauren; De Backer, Julie et al. (2018) Clinical history and management recommendations of the smooth muscle dysfunction syndrome due to ACTA2 arginine 179 alterations. Genet Med 20:1206-1215
Lowey, Susan; Bretton, Vera; Joel, Peteranne B et al. (2018) Hypertrophic cardiomyopathy R403Q mutation in rabbit ?-myosin reduces contractile function at the molecular and myofibrillar levels. Proc Natl Acad Sci U S A 115:11238-11243
Robinet, Peggy; Milewicz, Dianna M; Cassis, Lisa A et al. (2018) Consideration of Sex Differences in Design and Reporting of Experimental Arterial Pathology Studies-Statement From ATVB Council. Arterioscler Thromb Vasc Biol 38:292-303
Kwartler, Callie S; Gong, Limin; Chen, Jiyuan et al. (2018) Variants of Unknown Significance in Genes Associated with Heritable Thoracic Aortic Disease Can Be Low Penetrant ""Risk Variants"". Am J Hum Genet 103:138-143
Tan, Kai Li; Haelterman, Nele A; Kwartler, Callie S et al. (2018) Ari-1 Regulates Myonuclear Organization Together with Parkin and Is Associated with Aortic Aneurysms. Dev Cell 45:226-244.e8
Guo, Dong-Chuan; Regalado, Ellen S; Pinard, Amelie et al. (2018) LTBP3 Pathogenic Variants Predispose Individuals to Thoracic Aortic Aneurysms and Dissections. Am J Hum Genet 102:706-712
Guo, Dong-Chuan; Hostetler, Ellen M; Fan, Yuxin et al. (2017) Heritable Thoracic Aortic Disease Genes in Sporadic Aortic Dissection. J Am Coll Cardiol 70:2728-2730
Ren, Pingping; Hughes, Michael; Krishnamoorthy, Swapna et al. (2017) Critical Role of ADAMTS-4 in the Development of Sporadic Aortic Aneurysm and Dissection in Mice. Sci Rep 7:12351
Liu, Zhenan; Chang, Audrey N; Grinnell, Frederick et al. (2017) Vascular disease-causing mutation, smooth muscle ?-actin R258C, dominantly suppresses functions of ?-actin in human patient fibroblasts. Proc Natl Acad Sci U S A 114:E5569-E5578

Showing the most recent 10 out of 54 publications