The Program Project seeks to determine the mechanisms responsible for the toxicities associated with acellular hemoglobins in blood and to establish biochemical and physiological strategies to prevent limit and/or reverse these adverse events. Core B is responsible for the chemical modification of wild type and mutant hemoglobins to manipulate their structure and function as required by the individual units of the Program Project. This Core will get mutant Hbs from the Project 2/Core C These mutants and wild type HbA will be chemically modified to modulate oxygen affinity and nitrite reductase activity (NR activity), cross-linked to prevent dissociation, PEGylated to increase the molecular size, viscosity and colloid osmotic pressure (COP), and oligomerized to enhance the molecular size and effective Hb concentration. This Core will coordinate with the rest of the units of the Program Project to decide the molecular characteristics of the hemoglobin products required for the studies of individual units and develop strategies to design these products. The Core will also be responsible for the preparation of nanoparticles designed in Project 3 and manipulate the preparation protocols to customize the release patterns of the enclosed components. The functions of the Core B are: 1. Synthesize PEGylated/chemically modified wild type and mutant Hbs with the specifications required by the individual units of the program at 1 to 10 g levels. 2. Determine the molecular properties of the products including O2 affinity, viscosity, colloidal oncotic pressure (COP), and molecular size. 3. Standardize the preparation of nanoparticles designed in Project 3;customize the release profiles of the enclosed components, and prepare large amounts of nanoparticles for project 1 and core D.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL110900-02
Application #
8517810
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
2
Fiscal Year
2013
Total Cost
$307,299
Indirect Cost
$123,287
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Esquerra, Raymond M; Bibi, Bushra M; Tipgunlakant, Pooncharas et al. (2016) Role of Heme Pocket Water in Allosteric Regulation of Ligand Reactivity in Human Hemoglobin. Biochemistry 55:4005-17
Sjodt, Megan; Macdonald, Ramsay; Spirig, Thomas et al. (2016) The PRE-Derived NMR Model of the 38.8-kDa Tri-Domain IsdH Protein from Staphylococcus aureus Suggests That It Adaptively Recognizes Human Hemoglobin. J Mol Biol 428:1107-29
Díaz-Trelles, Ramón; Scimia, Maria Cecilia; Bushway, Paul et al. (2016) Notch-independent RBPJ controls angiogenesis in the adult heart. Nat Commun 7:12088
Strader, Michael Brad; Kassa, Tigist; Meng, Fantao et al. (2016) Oxidative instability of hemoglobin E (β26 Glu→Lys) is increased in the presence of free α subunits and reversed by α-hemoglobin stabilizing protein (AHSP): Relevance to HbE/β-thalassemia. Redox Biol 8:363-74
Cordes, Thekla; Wallace, Martina; Michelucci, Alessandro et al. (2016) Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels. J Biol Chem 291:14274-84
Buono, Michael J; Krippes, Taylor; Kolkhorst, Fred W et al. (2016) Increases in core temperature counterbalance effects of haemoconcentration on blood viscosity during prolonged exercise in the heat. Exp Physiol 101:332-42
Chintagari, Narendranath Reddy; Jana, Sirsendu; Alayash, Abdu I (2016) Oxidized Ferric and Ferryl Forms of Hemoglobin Trigger Mitochondrial Dysfunction and Injury in Alveolar Type I Cells. Am J Respir Cell Mol Biol 55:288-98
Rutardottir, Sigurbjörg; Karnaukhova, Elena; Nantasenamat, Chanin et al. (2016) Structural and biochemical characterization of two heme binding sites on α1-microglobulin using site directed mutagenesis and molecular simulation. Biochim Biophys Acta 1864:29-41
Zhang, Zhuo; Leong, Daniel J; Xu, Lin et al. (2016) Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model. Arthritis Res Ther 18:128
Shi, Patricia A; Choi, Erika; Chintagari, Narendranath R et al. (2016) Sustained treatment of sickle cell mice with haptoglobin increases HO-1 and H-ferritin expression and decreases iron deposition in the kidney without improvement in kidney function. Br J Haematol :

Showing the most recent 10 out of 78 publications