The Program Project seeks to determine the mechanisms responsible for the toxicities associated with acellular hemoglobins in blood and to establish biochemical and physiological strategies to prevent limit and/or reverse these adverse events. Core B is responsible for the chemical modification of wild type and mutant hemoglobins to manipulate their structure and function as required by the individual units of the Program Project. This Core will get mutant Hbs from the Project 2/Core C These mutants and wild type HbA will be chemically modified to modulate oxygen affinity and nitrite reductase activity (NR activity), cross-linked to prevent dissociation, PEGylated to increase the molecular size, viscosity and colloid osmotic pressure (COP), and oligomerized to enhance the molecular size and effective Hb concentration. This Core will coordinate with the rest of the units of the Program Project to decide the molecular characteristics of the hemoglobin products required for the studies of individual units and develop strategies to design these products. The Core will also be responsible for the preparation of nanoparticles designed in Project 3 and manipulate the preparation protocols to customize the release patterns of the enclosed components. The functions of the Core B are: 1. Synthesize PEGylated/chemically modified wild type and mutant Hbs with the specifications required by the individual units of the program at 1 to 10 g levels. 2. Determine the molecular properties of the products including O2 affinity, viscosity, colloidal oncotic pressure (COP), and molecular size. 3. Standardize the preparation of nanoparticles designed in Project 3;customize the release profiles of the enclosed components, and prepare large amounts of nanoparticles for project 1 and core D.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Albert Einstein College of Medicine
United States
Zip Code
Meng, Fantao; Tsai, Amy G; Intaglietta, Marcos et al. (2015) PEGylation of ??-Hb using succinimidyl propionic acid PEG 5K: Conjugation chemistry and PEG shell structure dictate respectively the oxygen affinity and resuscitation fluid like properties of PEG ??-Hbs. Artif Cells Nanomed Biotechnol 43:270-81
Yalcin, Ozlem; Ortiz, Daniel; Tsai, Amy G et al. (2014) Microhemodynamic aberrations created by transfusion of stored blood. Transfusion 54:1015-27
Alayash, Abdu I (2014) Blood substitutes: why haven't we been more successful? Trends Biotechnol 32:177-85
Belcher, John D; Chen, Chunsheng; Nguyen, Julia et al. (2014) Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123:377-90
Liong, Celine; Ortiz, Daniel; Ao-ieong, Eilleen et al. (2014) Localized increase of tissue oxygen tension by magnetic targeted drug delivery. Nanotechnology 25:265102
Chatpun, Surapong; Cabrales, Pedro (2014) Nitric oxide synthase inhibition attenuates cardiac response to hemodilution with viscogenic plasma expander. Korean Circ J 44:105-12
Ortiz, Daniel; BriceƱo, Juan Carlos; Cabrales, Pedro (2014) Microhemodynamic parameters quantification from intravital microscopy videos. Physiol Meas 35:351-67
Mollan, Todd L; Jia, Yiping; Banerjee, Sambuddha et al. (2014) Redox properties of human hemoglobin in complex with fractionated dimeric and polymeric human haptoglobin. Free Radic Biol Med 69:265-77
Ortiz, Daniel; Barros, Marcelo; Yan, Su et al. (2014) Resuscitation from hemorrhagic shock using polymerized hemoglobin compared to blood. Am J Emerg Med 32:248-55
Sriram, Krishna; Intaglietta, Marcos; Tartakovsky, Daniel M (2014) Non-Newtonian flow of blood in arterioles: consequences for wall shear stress measurements. Microcirculation 21:628-39

Showing the most recent 10 out of 19 publications