The program project grant "Neutralizing Antibody (NAb) and AAV FIX Gene Therapy" is a timely focused application centered around advancing exciting new clinical data that "self complementary" (sc)AAV Factor IX (FIX) vectors are showing promising success in clinical studies (5-8% >1yr). To further advance these successes, we have assembled a multidisciplinary approach to understand, address, and resolve the role of pre-existing NAb to AAV capsid (over 80% of general population). A primary focus of PPG relates to molecular interactions between viral capsid in antibody response, engineering next generation vectors, and development and testing in novel NAb positive animal models. This PPG consists of 4 projects and 3 cores. Project 1 "FIX Gene Therapy and Role of AAV NAb" (PI - Dr. R. Jude Samulski) will capitalize on the availability of St. Jude FIX trial serum samples, humanized mouse models and peptide library to understand relationship between capsid antigen presentation and Ab response. Project 2 "Humanizing AAV Vectors for Gene Therapy" (PI- Dr. Aravind Asokan) will focus on engineering and utilizing novel AAV vectors in an effort to avoid NAb. Project 3 "Intra-articular AAV to Circumvent Systemic Neutralization" (PI - Dr. Paul Monahan) will utilize PPG gene transfer reagents to understand and prevent joint complications of hemophilia in animal models with pre-existing NAb. Project 4 "Generation of a Model of Hemophilia B and AAV Resistant Primates" (PIs Bruce Sullenger/Dougald Monroe): will use aptamer technology to generate and validate hemophilia in Ab+ non-human primate model for gene correction with PPG vectors, along with Administrative core (Pl-Dr. Samulski, Co-Dr. Monahan), vector and animal cores (Pls-Drs. Beecham &Li). This PPG is composed of unique group of researchers with expertise in biochemistry (Dr. Monroe), molecular biology (Dr. Sullenger), virology (Drs. Asokan &Samulski), and clinical hematology (Dr. Monahan) working synergistically to bring direct benefit of vector development (AAV), molecular therapeutics (sc-opt FIX and opt FVlll), and novel NAb non-human primate hemophilic model (aptamer) to bleeding disorders. The long-term objective of this PPG is to advance basic understanding of vector-cell-animal model interactions for safe gene delivery.

Public Health Relevance

Program Project Grant objective is to engineer, test, and validate next generation AAV vectors in novel animal models of bleeding disorders with pre-existing NAb in hope of extending the clinical success seen with scAAV FIX.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Link, Rebecca P
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Schools of Medicine
Chapel Hill
United States
Zip Code
Shen, Shen; Berry, Garrett E; Castellanos Rivera, Ruth M et al. (2015) Functional analysis of the putative integrin recognition motif on adeno-associated virus 9. J Biol Chem 290:1496-504
Suwanmanee, Thipparat; Hu, Genlin; Gui, Tong et al. (2014) Integration-deficient lentiviral vectors expressing codon-optimized R338L human FIX restore normal hemostasis in Hemophilia B mice. Mol Ther 22:567-74
Lau, A G; Sun, J; Hannah, W B et al. (2014) Joint bleeding in factor VIII deficient mice causes an acute loss of trabecular bone and calcification of joint soft tissues which is prevented with aggressive factor replacement. Haemophilia 20:716-22
Nicolson, Sarah C; Samulski, R Jude (2014) Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus. J Virol 88:4132-44
Hemphill, Daniel D; McIlwraith, C Wayne; Samulski, R Jude et al. (2014) Adeno-associated viral vectors show serotype specific transduction of equine joint tissue explants and cultured monolayers. Sci Rep 4:5861
Mitchell, Angela M; Hirsch, Matthew L; Li, Chengwen et al. (2014) Promyelocytic leukemia protein is a cell-intrinsic factor inhibiting parvovirus DNA replication. J Virol 88:925-36
Shen, Shen; Horowitz, Eric D; Troupes, Andrew N et al. (2013) Engraftment of a galactose receptor footprint onto adeno-associated viral capsids improves transduction efficiency. J Biol Chem 288:28814-23
Gurda, Brittney L; DiMattia, Michael A; Miller, Edward B et al. (2013) Capsid antibodies to different adeno-associated virus serotypes bind common regions. J Virol 87:9111-24
Asokan, Aravind; Samulski, R Jude (2013) An emerging adeno-associated viral vector pipeline for cardiac gene therapy. Hum Gene Ther 24:906-13
Monahan, Paul E; Gui, Tong (2013) Gene therapy for hemophilia: advancing beyond the first clinical success. Curr Opin Hematol 20:410-6