The major morbidity of congenital factor Vlll and IX deficiencies (hemophilia A and B) is the progressive crippling arthropathy caused by repeated joint bleeding. The institution early in childhood of prophylactic intravenous factor Vlll or IX replacement throughout the circulation can prevent bleeding-induced joint damage. Apparent clinical success in some subjects receiving a liver-directed factor IX adeno-associated virus (AAV) gene therapy vector raises hope. Nevertheless, failed expression in other subjects receiving identical doses suggests the promise of this strategy may be limited to a select group of individuals, specifically, those without preexisting neutralizing antibodies against AAV;in addition, individuals having neutralizing antibodies against the clotting factor transgene and those with significant liver disease are excluded. The proposed investigations exploit the finding that neutralizing antibody titers appear lower in the hemophilic joint than in the circulation, and the studies explore the potential for local clotting factor gene delivery in the joint to decrease morbidity for hemophilic individuals not adequately treated by available prophylactic protein or emerging gene therapies. The studies compare phylogenetically distinct AAV serotypes for localized gene expression in joint synovial fibroblasts versus chondrocytes in nonnal and blood-damaged joints. Optimization of factor IX vectors having wild type or gain of function genes will he pursued in hemophilic mice, as well as evaluation of comparative immunogenicity of these variants in novel hemophilia B mouse models carrying both human hemophilia gene sequences and human MHC II haplotype. Intraarticular gene delivery following passive transfer of/^AV-neutralizing antibodies from AAV- immunized mice and dogs will be studied in these small and large hemophilia models. The FIX studies will inform evaluation of wild-type and mutant factor Vlll vectors delivered with adjuvant proteasome inhibitors for joint expression in hemophilia A mice in the setting of induced factor Vlll inhibitors or AAV-neutralizing antibodies. The broad objective of the studies is to advance tools for the study of blood-induced joint damage and examine therapies to circumvent major limitations imposed by systemic humoral immunity.

Public Health Relevance

The potential to harness naturally-occurring viaises to correct disease can be hampered by antibodies that circulate in the blood and prevent potentially curative gene delivery. In conditions causing localized damage, such as the hemophilia's joint destruction, avoiding treatment of the entire body may be an effective and safe way to decrease the burden of disease. The studies pursue efficient strategies to avoid antibodies and improve living with hemophilia by targeting therapy directly to joints.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL112761-02
Application #
8616793
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
City
Chapel Hill
State
NC
Country
United States
Zip Code
Xiao, Ping-Jie; Mitchell, Angela M; Huang, Lu et al. (2016) Disruption of Microtubules Post-Virus Entry Enhances Adeno-Associated Virus Vector Transduction. Hum Gene Ther 27:309-24
Wang, M; Sun, J; Crosby, A et al. (2016) Direct interaction of human serum proteins with AAV virions to enhance AAV transduction: immediate impact on clinical applications. Gene Ther :
Li, Chengwen; Wu, Shuqing; Albright, Blake et al. (2016) Development of Patient-specific AAV Vectors After Neutralizing Antibody Selection for Enhanced Muscle Gene Transfer. Mol Ther 24:53-65
Berry, Garrett E; Asokan, Aravind (2016) Chemical Modulation of Endocytic Sorting Augments Adeno-associated Viral Transduction. J Biol Chem 291:939-47
Berry, Garrett Edward; Asokan, Aravind (2016) Cellular transduction mechanisms of adeno-associated viral vectors. Curr Opin Virol 21:54-60
Nelson, Christopher E; Hakim, Chady H; Ousterout, David G et al. (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351:403-7
Murlidharan, Giridhar; Crowther, Andrew; Reardon, Rebecca A et al. (2016) Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain. JCI Insight 1:e88034
Schreiber, Claire A; Sakuma, Toshie; Izumiya, Yoshihiro et al. (2015) An siRNA Screen Identifies the U2 snRNP Spliceosome as a Host Restriction Factor for Recombinant Adeno-associated Viruses. PLoS Pathog 11:e1005082
Goodrich, L R; Grieger, J C; Phillips, J N et al. (2015) scAAVIL-1ra dosing trial in a large animal model and validation of long-term expression with repeat administration for osteoarthritis therapy. Gene Ther 22:536-45
Hastie, Eric; Samulski, R Jude (2015) Recombinant adeno-associated virus vectors in the treatment of rare diseases. Expert Opin Orphan Drugs 3:675-689

Showing the most recent 10 out of 34 publications