The acute respiratory distress syndrome (ARDS) is most commonly due to severe bacterial infection, including pneumonia. Despite decades of intense study, mortality rates for ARDS are still very high and yet newer therapeutic strategies based on fundamentally novel molecular-pathophysiologic-driven models have not emerged. This PPG application is based on our seminal discovery that a critical mitochondrial-specific lipid, cardiollpin, profoundly produces ARDS-like features when released into the extracellular environment (Nat. Med. 2010). The overall conceptual model underlying this Program is that cardiollpin is a new lipidomic associated molecular pattern encoding bacterial-like molecular signatures that is normally masked by its compartmentalization within the inner mitochondrial membrane of mammalian cells. However, in our preliminary data suggest that in pneumonia models there occur seminal events whereby cardiollpin is exposed into the extracellular environment through its dysregulated biosynthesis (Project 1) or oxidative transmigration (Project 2) from mitochondria in epithelia resulting in severe adverse consequences for immune suppressor activities of myeloid cells (Project 3). Thus, the overall hypothesis is that cardiollpin elicits differential efects on pulmonary homeostasis in ARDS that are cell specific and highly compartmentalized. To execute this Program, we have assembled a team of world-class leaders with complementary expertise to synergistically investigate mechanisms that modulate availability cardiollpin and its role in mitochondrial integrity, epithelial apoptosis, and innate immune function. To evaluate the hypothesis, investigators will employ state-of-art molecular, cell-based, and lipidomic tools that will be translated to complementary in vivo models of lung injury and analysis in human subjects with ARDS. The Program will be supported by highly interactive Cores with expertise in oxidative lipidomics, animal and human repository services, and bioimaging. Execution of these studies will provide a paradigm-changing conceptual model for ARDS pathogenesis that serves as a basis for therapeutic intervention and providing a new and sustained field of scientific inquiry in lung biology.

Public Health Relevance

ARDS is most commonly due to severe bacterial infection, including pneumonia. Despite decades of intense study, mortality rates for ARDS are still very high and yet newer therapeutic strategies based on fundamentally novel molecular-pathophysiologic-driven models have not emerged. This PPG application is based on our seminal discovery that a critical mitochondrial-specific lipid, cardiolipin, profoundly produces ARDS-like features when released into the extracellular environment.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL114453-02
Application #
8790764
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Harabin, Andrea L
Project Start
2014-01-03
Project End
2018-12-31
Budget Start
2015-01-15
Budget End
2015-12-31
Support Year
2
Fiscal Year
2015
Total Cost
$1,754,802
Indirect Cost
$613,621
Name
University of Pittsburgh
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Suber, Tomeka L; Nikolli, Ina; O'Brien, Michael E et al. (2018) FBXO17 promotes cell proliferation through activation of Akt in lung adenocarcinoma cells. Respir Res 19:206
Kitsios, Georgios D; Fitch, Adam; Manatakis, Dimitris V et al. (2018) Respiratory Microbiome Profiling for Etiologic Diagnosis of Pneumonia in Mechanically Ventilated Patients. Front Microbiol 9:1413
Chao, Honglu; Anthonymuthu, Tamil S; Kenny, Elizabeth M et al. (2018) Disentangling oxidation/hydrolysis reactions of brain mitochondrial cardiolipins in pathogenesis of traumatic injury. JCI Insight 3:
Kitsios, Georgios D; McVerry, Bryan J (2018) Host-Microbiome Interactions in the Subglottic Space. Bacteria Ante Portas! Am J Respir Crit Care Med 198:294-297
Lou, Wenjia; Ting, Hsiu-Chi; Reynolds, Christian A et al. (2018) Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1354-1368
Anthonymuthu, Tamil S; Kenny, Elizabeth M; Lamade, Andrew M et al. (2018) Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol Med 124:493-503
Hassannia, Behrouz; Wiernicki, Bartosz; Ingold, Irina et al. (2018) Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest 128:3341-3355
Meiners, Silke; Evankovich, John; Mallampalli, Rama K (2018) The ubiquitin proteasome system as a potential therapeutic target for systemic sclerosis. Transl Res 198:17-28
Gaschler, Michael M; Andia, Alexander A; Liu, Hengrui et al. (2018) FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14:507-515
Qu, Yanyan; Olonisakin, Tolani; Bain, William et al. (2018) Thrombospondin-1 protects against pathogen-induced lung injury by limiting extracellular matrix proteolysis. JCI Insight 3:

Showing the most recent 10 out of 95 publications