Reduced airway pH can be caused by exogenous as well as endogenous sources including ainway inflam- mation, and can contribute to the pathophysiology of obstructive airway diseases. Neural mechanisms are known capable of mediating acidosis-induced bronchoconstriction, but whether reduced pH in the ainway microenvironment has direct effects on ainway smooth muscle (ASM) is unknown. We have discovered that ASM expresses 0GR1, a member of a unique subfamily of G protein-coupled receptors (GPCRs) proposed to be "proton-sensing." Preliminary data suggest 0GR1 is expressed in ASM and, in response to reductions in extracellular pH, signals in a manner consistent with pro-contracfile Gq-coupled GPCRs. Moreover, with modest step decreases in buffer pH that parallel the activation of 0GR1, murine tracheal rings contract ex vivo, as do ASM cells from 0GR1 +/+ but not -/- mice. Mindful of the inherent difficulties in invesfigating a receptor whose cognate ligand may be a proton, we have assembled a team of experts in GPCR biology, airway biology, and integrafive models of acid-induced bronchoconstriction to undertake the challenge of: 1) establishing the relevance of 0GR1 to ASM contractility;and 2) idenfifying therapeutic drugs and strategies to manipulate its signaling and funcfion in ASM.
In Aim 1, we propose to detail acid-induced signaling events in ASM, employing both genetic and molecular biology approaches on ASM cells to establish the contribufion, and mechanism of acfivation, of 0GR1.
Aim 2 will validate recently discovered allosteric modulators as agonists/antagonists of CGRI signaling, and take advantage of screening/drug discovery approaches and tools established for this PPG to identify means of antagonizing pro-contracfile signaling while enhancing pro-relaxant signaling.
In Aim 3, we will establish both relevance and robustness of pH- dependent 0GR1 funcfion in ASM by taking advantage of cutting edge models of cell, tissue, and ainway contraction, and utilize drugs/strategies developed in Aim 2 to render OGR1 pro-relaxant as opposed pro- contracfile. Collectively, these studies will help idenfify a novel signaling pathway in ASM that participates in the pathobiology of numerous ainways diseases, and determine a means to target it therapeutically.

Public Health Relevance

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL114471-01A1
Application #
8512855
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-07-15
Budget End
2014-06-30
Support Year
1
Fiscal Year
2013
Total Cost
$401,394
Indirect Cost
$110,245
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Aisenberg, William H; Huang, Jessie; Zhu, Wanqu et al. (2016) Defining an olfactory receptor function in airway smooth muscle cells. Sci Rep 6:38231
Carr 3rd, Richard; Schilling, Justin; Song, Jianliang et al. (2016) β-arrestin-biased signaling through the β2-adrenergic receptor promotes cardiomyocyte contraction. Proc Natl Acad Sci U S A 113:E4107-16
Carr 3rd, Richard; Koziol-White, Cynthia; Zhang, Jie et al. (2016) Interdicting Gq Activation in Airway Disease by Receptor-Dependent and Receptor-Independent Mechanisms. Mol Pharmacol 89:94-104
Ghosh, Arnab; Koziol-White, Cynthia J; Asosingh, Kewal et al. (2016) Soluble guanylate cyclase as an alternative target for bronchodilator therapy in asthma. Proc Natl Acad Sci U S A 113:E2355-62
Xie, Yan; Jiang, Haihong; Zhang, Qian et al. (2016) Upregulation of RGS2: a new mechanism for pirfenidone amelioration of pulmonary fibrosis. Respir Res 17:103
Pera, Tonio; Penn, Raymond B (2016) Bronchoprotection and bronchorelaxation in asthma: New targets, and new ways to target the old ones. Pharmacol Ther 164:82-96
Dileepan, Mythili; Sarver, Anne E; Rao, Savita P et al. (2016) MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells. PLoS One 11:e0150842
Kim, Donghwa; Pauer, Susan H; Yong, Hwan M et al. (2016) β2-Adrenergic Receptors Chaperone Trapped Bitter Taste Receptor 14 to the Cell Surface as a Heterodimer and Exert Unidirectional Desensitization of Taste Receptor Function. J Biol Chem 291:17616-28
An, Steven S; Mitzner, Wayne; Tang, Wan-Yee et al. (2016) An inflammation-independent contraction mechanophenotype of airway smooth muscle in asthma. J Allergy Clin Immunol 138:294-297.e4
Billington, Charlotte K; Penn, Raymond B; Hall, Ian P (2016) β2 Agonists. Handb Exp Pharmacol :

Showing the most recent 10 out of 38 publications