Bronchodilators are used in the treatment of asthma for acute relief of bronchospasm and for long-term control. Currently, only one class of direct bronchodilators, p-agonists acting at airway smooth muscle P2- adrenergic receptors, are in use. With many asthmatics not achieving adequate disease control, there is a need for additional therapeutics, including direct bronchodilators acting by novel mechanisms. We have discovered multiple bitter taste receptor (TAS2R) subtypes on human airway smooth muscle (HASM). Activation of TAS2Rs by bitter ligands causes marked airway smooth muscle relaxation in vitro and in vivo, and in various models of asthma. TAS2R-mediated bronchodilation is as efficacious as p-agonists, and is via a completely different mechanism involving specialized Ca^"^ signaling. There are thousands of potential TAS2R agonists derived from plants or synthesized for other purposes, yet prior to our findings these were not considered for asthma therapy. In this Project, we will examine the properties of HASM TAS2Rs with an eye towards agonists being a new class of bronchodilators for treating asthma.
In Aim 1, we will focus on the potential for acute desensitization, which can limit therapeutic efficacy. Agonist-promoted desensitization of the 3 most abundant HASM TAS2Rs will be examined in HASM cells, bronchi from precision-cut human lung slices and recombinantly expressing model cells. G-protein coupling, phosphorylation, internalization, B arrestin interactions, and biased ligand properties will be established. The influence ofthe asthma diathesis on these properties will also be determined using 2 models, so that applicability to asthma treatment can be ascertained.
In Aim 2, we will establish the specific GRK phosphorylation sites for the relevant HASM TAS2RS, using site-directed mutagenesis and recombinant expression, so that a precise mechanism ofthe signal quenching is determined. Some TAS2Rs appear to undergo upregulation when exposed chronically to agonists, a phenotype that is opposite to P2-adrenergic receptors which downregulate upon chronic p-agonist treatment. TAS2R upregulation would be an extremely favorable profile, acting to limit tachyphylaxis.
Aim 3 will determine which ofthe HASM TAS2Rs display upregulation, the molecular mechanism ofthe process, and the basis for biased ligands to promote the effect. Collectively, these studies will define the molecular and pharmacologic properties of HASM TAS2Rs required for future development of a novel class of bronchodilators for treating asthma.

Public Health Relevance

Many asthmatics do not achieve adequate control of their disease, and current drugs aimed at directly dilating the airways are confined to p-agonists. We propose that bitter taste receptors on airway smooth muscle represent a novel way to bronchodilate and this project will determine the characteristics of this pathway in order to develop a new class of therapeutics for treating asthma.

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
5P01HL114471-02
Application #
8701372
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Aisenberg, William H; Huang, Jessie; Zhu, Wanqu et al. (2016) Defining an olfactory receptor function in airway smooth muscle cells. Sci Rep 6:38231
Carr 3rd, Richard; Schilling, Justin; Song, Jianliang et al. (2016) β-arrestin-biased signaling through the β2-adrenergic receptor promotes cardiomyocyte contraction. Proc Natl Acad Sci U S A 113:E4107-16
Carr 3rd, Richard; Koziol-White, Cynthia; Zhang, Jie et al. (2016) Interdicting Gq Activation in Airway Disease by Receptor-Dependent and Receptor-Independent Mechanisms. Mol Pharmacol 89:94-104
Ghosh, Arnab; Koziol-White, Cynthia J; Asosingh, Kewal et al. (2016) Soluble guanylate cyclase as an alternative target for bronchodilator therapy in asthma. Proc Natl Acad Sci U S A 113:E2355-62
Xie, Yan; Jiang, Haihong; Zhang, Qian et al. (2016) Upregulation of RGS2: a new mechanism for pirfenidone amelioration of pulmonary fibrosis. Respir Res 17:103
Pera, Tonio; Penn, Raymond B (2016) Bronchoprotection and bronchorelaxation in asthma: New targets, and new ways to target the old ones. Pharmacol Ther 164:82-96
Dileepan, Mythili; Sarver, Anne E; Rao, Savita P et al. (2016) MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells. PLoS One 11:e0150842
Kim, Donghwa; Pauer, Susan H; Yong, Hwan M et al. (2016) β2-Adrenergic Receptors Chaperone Trapped Bitter Taste Receptor 14 to the Cell Surface as a Heterodimer and Exert Unidirectional Desensitization of Taste Receptor Function. J Biol Chem 291:17616-28
An, Steven S; Mitzner, Wayne; Tang, Wan-Yee et al. (2016) An inflammation-independent contraction mechanophenotype of airway smooth muscle in asthma. J Allergy Clin Immunol 138:294-297.e4
Billington, Charlotte K; Penn, Raymond B; Hall, Ian P (2016) β2 Agonists. Handb Exp Pharmacol :

Showing the most recent 10 out of 38 publications