Asthma is a complex disease that results in airway smooth muscle (ASM) contraction and subsequent airway constriction. The major drugs used to treat asthma include B-agonists that promote ASM relaxation, Gq-coupled receptor antagonists that inhibit bronchoconstriction, and corticosteroids that reduce inflammation. Recent studies suggest that long acting p-agonists (LABAs) increase the risk of having a severe asthmatic attack that can result in death. While the mechanism whereby B-agonists cause such severe side effects clearly needs to be defined, B2-adrenergic receptor (B2AR) desensitization and B-arrestin- mediated signaling appear to contribute to this process. We hypothesize that biased agonists that selectively promote B2AR interaction with Gs will serve as an effective way of treating asthma.
In aim 1, we propose to test this hypothesis by analyzing the ability of lipidated B2AR peptides (pepducins) that we have identified to promote Gs-biased coupling of the B2AR in human ASM cells and precision cut lung slices. Another approach to attenuate GRK/B-arrestin-mediated regulation of P2AR function is to selectively inhibit these proteins.
In aim 2, we will better define the GRKs and B-arrestins that regulate B2AR function in human ASM cells and then use inhibitory peptides, small molecules and screening approaches to target these pathways. Inhibition of Gq signaling can also serve as an effective means of treating asthma, although there are many Gq-coupled receptors that are activated in asthma. We hypothesize that inhibiting a single receptor is an ineffective way of attenuating ASM contraction and, in aim 3, propose to develop broad-based inhibitors of Gq signaling. These include a pepducin that functions as a broad-based antagonist of Gq signaling, lipidated Gaq peptides that selectively disrupt GPCR/Gq coupling, and small molecule inhibitors of GBy-mediated signaling. Overall, these studies should: 1) identify pepducins that have substantially preferred properties over the p-agonists that are currently used to treat asthma;2) identify GRK/p-arrestin pathway inhibitors that enhance P2AR signaling;and 3) identify compounds that can effectively inhibit airway smooth muscle contraction.

Public Health Relevance

Asthma is a complex disease that affects -8% of the US population and is manifested by enhanced airway inflammation that leads to airway smooth muscle contraction and subsequent airway constriction. The proposed research will utilize several strategies to develop ways of enhancing airway smooth muscle relaxation and inhibiting airway smooth muscle contraction. These efforts should lead to a better understanding of the mechanisms involved in asthma and may lead to the development of better drugs for the treatment of airway diseases such as asthma.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL114471-02
Application #
8701373
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Panettieri, Reynold A; Pera, Tonio; Liggett, Stephen B et al. (2018) Pepducins as a potential treatment strategy for asthma and COPD. Curr Opin Pharmacol 40:120-125
Lo, Dennis; Kennedy, Joshua L; Kurten, Richard C et al. (2018) Modulation of airway hyperresponsiveness by rhinovirus exposure. Respir Res 19:208
Kim, Donghwa; Cho, Soomin; Woo, Jung A et al. (2018) A CREB-mediated increase in miRNA let-7f during prolonged ?-agonist exposure: a novel mechanism of ?2-adrenergic receptor down-regulation in airway smooth muscle. FASEB J 32:3680-3688
Huang, Yapei; Xie, Yan; Jiang, Haihong et al. (2018) Upregulated P-Rex1 exacerbates human airway smooth muscle hyperplasia in asthma. J Allergy Clin Immunol :
Manorak, Wichayapha; Idahosa, Chizobam; Gupta, Kshitij et al. (2018) Upregulation of Mas-related G Protein coupled receptor X2 in asthmatic lung mast cells and its activation by the novel neuropeptide hemokinin-1. Respir Res 19:1
An, Steven S; Liggett, Stephen B (2018) Taste and smell GPCRs in the lung: Evidence for a previously unrecognized widespread chemosensory system. Cell Signal 41:82-88
Winchell, Caylin G; Dragan, Amanda L; Brann, Katelynn R et al. (2018) Coxiella burnetii Subverts p62/Sequestosome 1 and Activates Nrf2 Signaling in Human Macrophages. Infect Immun 86:
Chaturvedi, Madhu; Schilling, Justin; Beautrait, Alexandre et al. (2018) Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors. Trends Biochem Sci 43:533-546
Tliba, Omar; Panettieri Jr, Reynold A (2018) Paucigranulocytic asthma: Uncoupling of airway obstruction from inflammation. J Allergy Clin Immunol :
Pera, Tonio; Deshpande, Deepak A; Ippolito, Michael et al. (2018) Biased signaling of the proton-sensing receptor OGR1 by benzodiazepines. FASEB J 32:862-874

Showing the most recent 10 out of 68 publications