Cigarette smoking is the greatest known single risk factor for the development of lung disease, being a dominant risk for the development of both emphysema and idiopathic pulmonary fibrosis. While pulmonary fibrosis and emphysema can co-exist in the same individual, our recent report indicates that subclinical idiopathic pulmonary fibrosis (IPF) is inversely associated with total lung capacity and emphysema in smokers. Along with the fact that most former smokers with IPF do not have radiographic evidence of emphysema, suggests that these patterns of disease are likely to be due to distinct consequences of smoking reflecting unique individual susceptibilities, and its associated differential pathogenetic pathway(s). We have assembled a team of investigators who have worked efficiently and synergistically to better understand the mechanism(s) by which cigarette smoke can induce either fibrotic or emphysematous, or both phenotype. We have integrated the expertise of investigators from COPD and IPF community, both basic and translational, to come together to tackle this important challenge. The impact of reaching this major goal will be significant in the pulmonary community as we hope to unravel new molecular targets and/or treatment(s) for COPD and IPF. We will attempt to reach our goals by the addressing the following projects and cores: Projects: 1) Homeostatic Role of Autophagy in Lung Emphysema and Fibrosis 2) Genetic Modifiers of TGF-Beta1 and Cigarette Smoke in Fibrosis and Emphysema 3) Genetics and Epigenetics of COPD and IPF 4) Clinical Outcomes and Molecular Phenotypes in Smokers with Parenchymal Lung Disease Cores: 1) Administrative Core 2) Respiratory Computational Discovery Core 3) Clinical Biorepository Core 4) Murine Models and Molecular Analysis Core

Public Health Relevance

The pathogenesis of COPD and IPF is poorly understood. In this program project we have integrated the expertise of investigators from COPD and IPF community, both basic and translational, to come together to better understand the pathogenesis of these chronic lung diseases, and hopefully identify new molecular targets in the treatment of these dreadful diseases in the future.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Program Officer
Punturieri, Antonello
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Weill Medical College of Cornell University
Internal Medicine/Medicine
Schools of Medicine
New York
United States
Zip Code
Putman, Rachel K; Rosas, Ivan O; Hunninghake, Gary M (2014) Genetics and early detection in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 189:770-8
Petersen, Hans; Sood, Akshay; Meek, Paula M et al. (2014) Rapid lung function decline in smokers is a risk factor for COPD and is attenuated by angiotensin-converting enzyme inhibitor use. Chest 145:695-703
Mizumura, Kenji; Cloonan, Suzanne M; Nakahira, Kiichi et al. (2014) Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest 124:3987-4003
Lee, Chang-Min; Park, Jin Wook; Cho, Won-Kyung et al. (2014) Modifiers of TGF-?1 effector function as novel therapeutic targets of pulmonary fibrosis. Korean J Intern Med 29:281-90
Schumacker, Paul T; Gillespie, Mark N; Nakahira, Kiichi et al. (2014) Mitochondria in lung biology and pathology: more than just a powerhouse. Am J Physiol Lung Cell Mol Physiol 306:L962-74