Particular number of high-density lipoproteins (HDL) levels correlate inversely with atherosclerosis. HDL functions may contribute to this anti-atherogenic effect include: efflux of cholesterol from tissue, inhibition of lipid peroxidation, and inhibition of inflammation. Transfer of microRNA (miRNA) by HDL to endothelium may contribute to inhibition of inflammation by HDL. For reasons that remain unclear, in certain clinical conditions HDL loses its ability to perform these functions and become pro inflammatory instead. Currently, there are no interventions to prevent or reverse HDL dysfunction Interestingly, a sensitive indicator of lipid peroxidation, the F2-isoprostanes (F2-IS0P), are found at higher levels in HDL than in LDL or other components of plasma. Peroxidation of HDL in vitro renders it dysfunctional, and chemical modification of the lysyl residues of apoAl, the major protein of HDL, can dramatically alter its function. Isolevuglandins (IsoLG) are endogenous y-ketoaldehydes formed in parallel with F2-IS0P during lipid peroxidation. IsoLG rapidly modify and crosslink lysyl residues of proteins as well as phosphatidylethanolamines (PE). We hypothesize that IsoLG mediate HDL dysfunction in diseases associated with an increased risk of atherosclerosis and that small molecule aldehydes scavengers that we have previously developed to block IsoLG from modifying proteins will protect against HDL dysfunction.
The specific aims ofthe application will test the following hypothesis: Hypothesis 1: Modification of HDL with Fa-isoP or IsoLG renders HDL dysfunctional. In this aim, we will determine if treatment with synthetic IsoLG and F2-IS0P alters HDL function and structure, and expression of efflux protein in macrophages. We will also test if aldehydes scavengers protect against myeloperoxidase induced HDL dysfunction in vivo. Hypothesis 2: Formation of antibodies against IsoLG-apoAl contribute to HDL dysfunction. In this aim, we will determine the relationship between IsoLG-apoAl antibody titers and HDL function in rheumatoid arthritis patients. We will also test if inducing antibodies to IsoLG-ApoAl can cause HDL dysfunction in mice. Hypothesis 3: Modification of HDL alters its capacity to accept and deliver anti-inflammatory miRNA. In this aim, we will examine the effect of HDL modification on macrophage expression and export of miRNA, as well as uptake by endothelial cells.

Public Health Relevance

High density lipoproteins (HDL) are important in suppressing the development of atherosclerosis but can become dysfunctional under certain conditions where oxidative stress also occurs. Oxidation of lipids can generate reactive compounds, called isolevuglandins, which can react with proteins in HDL and render it dysfunctional. This application will address the hypothesis that overproduction of isolevuglandins is responsible for rendering HDL dysfunctional.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL116263-02
Application #
8852695
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
2016-04-30
Budget Start
2015-05-01
Budget End
2016-04-30
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37240
Kaseda, R; Tsuchida, Y; Gamboa, J L et al. (2018) Angiotensin receptor blocker vs ACE inhibitor effects on HDL functionality in patients on maintenance hemodialysis. Nutr Metab Cardiovasc Dis 28:582-591
Kaseda, Ryohei; Tsuchida, Yohei; Yang, Hai-Chun et al. (2018) Chronic kidney disease alters lipid trafficking and inflammatory responses in macrophages: effects of liver X receptor agonism. BMC Nephrol 19:17
Babaev, Vladimir R; Huang, Jiansheng; Ding, Lei et al. (2018) Loss of Rictor in Monocyte/Macrophages Suppresses Their Proliferation and Viability Reducing Atherosclerosis in LDLR Null Mice. Front Immunol 9:215
Byram, Kevin W; Oeser, Annette M; Linton, MacRae F et al. (2018) Exercise is Associated With Increased Small HDL Particle Concentration and Decreased Vascular Stiffness in Rheumatoid Arthritis. J Clin Rheumatol 24:417-421
Sedgeman, Leslie R; Beysen, Carine; Allen, Ryan M et al. (2018) Intestinal bile acid sequestration improves glucose control by stimulating hepatic miR-182-5p in type 2 diabetes. Am J Physiol Gastrointest Liver Physiol :
May-Zhang, Linda S; Yermalitsky, Valery; Huang, Jiansheng et al. (2018) Modification by isolevuglandins, highly reactive ?-ketoaldehydes, deleteriously alters high-density lipoprotein structure and function. J Biol Chem 293:9176-9187
Allen, Ryan M; Zhao, Shilin; Ramirez Solano, Marisol A et al. (2018) Bioinformatic analysis of endogenous and exogenous small RNAs on lipoproteins. J Extracell Vesicles 7:1506198
Mueller, Paul A; Zhu, Lin; Tavori, Hagai et al. (2018) Deletion of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Accelerates Atherosclerosis Regression and Increases C-C Chemokine Receptor Type 7 (CCR7) Expression in Plaque Macrophages. Circulation 138:1850-1863
Li, Kang; Rodosthenous, Rodosthenis S; Kashanchi, Fatah et al. (2018) Advances, challenges, and opportunities in extracellular RNA biology: insights from the NIH exRNA Strategic Workshop. JCI Insight 3:
Babaev, Vladimir R; Ding, Lei; Zhang, Youmin et al. (2018) Loss of 2 Akt (Protein Kinase B) Isoforms in Hematopoietic Cells Diminished Monocyte and Macrophage Survival and Reduces Atherosclerosis in Ldl Receptor-Null Mice. Arterioscler Thromb Vasc Biol :ATVBAHA118312206

Showing the most recent 10 out of 59 publications