The integrating theme and unifying hypothesis of this PPG centers on the concept that H202 production in the renal outer medulla (CM) plays a dominant role in the development of salt-sensitive hypertension. Studies in this PPG will use Dahl salt-sensitive (SS) rats to examine physiological mechanisms and molecular pathways underlying salt-sensitive hypertension;it does not focus on the generic aspects of this disease. This rat model recapitulates many aspects of human salt-sensitive hypertension and demonstrates disease phenotypes which are very similar to those observed in African Americans. Project 1 explores the role of the medullary thick ascending limb (mTAL) and tests the hypothesis that increased salt intake leads to greater mTAL NaCI delivery resulting in excess production of H202 in SS rats as amplified by a greater expression of the p67phox subunit of NADPH oxidase. It is proposed that this results in greater H202 diffusion into the interstitial space thereby constricting vasa recta and reducing medullary perfusion. Project 2 hypothesizes that the initials rise of arterial pressure following an increase in salt intake leads to the infiltration of T-cells in the kidney which exaggerates salt-sensitive hypertension and renal disease by increasing H202 and cytokines. The resulting T-lymphocyte infiltration into the kidney, we propose, is importanfiy influenced by Sh2b3, a gene recently identified by GWAS to be associated with human hypertension. Project 3 hypothesizes that a newly discovered pathway of H202 production related to cellular metabolism contributes importantly to the development and maintenance of hypertension in SS rats. Specifically, fumarase insufficiency in SS rats results in an increase of fumaric acid and glycolytic activity which stimulates H202 production and contributes to the salt-induced hypertension. These conceptually unique hypotheses combined with novel technological tools will advance our understanding of the molecular and physiological mechanisms underlying salt-sensitive hypertension that remain largely unclear. This highly integrated and collaborative program of three projects is supported by an Administrative Core A, the Biochemistry/Microscopy Core B, and Genetic Model Tracking and Monitoring Core C.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
OH, Youngsuk
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Medical College of Wisconsin
Schools of Medicine
United States
Zip Code
Evans, Louise C; Ryan, Robert P; Broadway, Elizabeth et al. (2015) Null mutation of the nicotinamide adenine dinucleotide phosphate-oxidase subunit p67phox protects the Dahl-S rat from salt-induced reductions in medullary blood flow and glomerular filtration rate. Hypertension 65:561-8
Geurts, Aron M; Mattson, David L; Liu, Pengyuan et al. (2015) Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats. Hypertension 65:447-55
Mattson, David L (2014) Infiltrating immune cells in the kidney in salt-sensitive hypertension and renal injury. Am J Physiol Renal Physiol 307:F499-508
Xu, Xialian; Kriegel, Alison J; Jiao, Xiaoyan et al. (2014) miR-21 in ischemia/reperfusion injury: a double-edged sword? Physiol Genomics 46:789-97
He, Xiaofeng; Liu, Yong; Usa, Kristie et al. (2014) Ultrastructure of mitochondria and the endoplasmic reticulum in renal tubules of Dahl salt-sensitive rats. Am J Physiol Renal Physiol 306:F1190-7
Wang, Le; Hou, Entai; Wang, Zhengjun et al. (2014) Analysis of metabolites in plasma reveals distinct metabolic features between Dahl salt-sensitive rats and consomic SS.13(BN) rats. Biochem Biophys Res Commun 450:863-9
Das, Satarupa; Mattson, David L (2014) Exogenous L-arginine attenuates the effects of angiotensin II on renal hemodynamics and the pressure natriuresis-diuresis relationship. Clin Exp Pharmacol Physiol 41:270-8
Rudemiller, Nathan; Lund, Hayley; Jacob, Howard J et al. (2014) CD247 modulates blood pressure by altering T-lymphocyte infiltration in the kidney. Hypertension 63:559-64