The Core B (Animal Model Core) for the MCW P01 program project grant, entitled ?Renal Mechanisms in Blood Pressure Control?, will support program project investigators with comprehensive management of several novel genetically engineered rat models. The need for Core B is apparent considering current heavy use of rat models and the numbers of animals proposed. Throughout the history of the PPG, Core B has provided a centralized approach to managing rat models to achieve the proposed studies. The overall goal of Core B is to assist program project investigators with the development, management, genotyping, distribution, and molecular characterization of the models. Multiple approaches will be available to develop new models as needed by the Project investigators. Core B will serve as an invaluable resource for the project investigators to define the novel mechanisms that lead to the control of blood pressure and kidney diseases. Core staff will also assist in experimental design and training of the laboratory staff, and participate in data collection, analysis, and preparation for publication.

Public Health Relevance

Animal Model Core B is an essential component of this grant and will support all three projects of this PPG. The three scientific projects share the common goal of providing novel insights into the mechanisms and functional pathways underlying the development of salt-sensitive hypertension and renal damage. The overall goal of Core B is to manage, genotype distribute, and assist in the molecular characterization of several genetically modified rat strains necessary to conduct the proposed studies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL116264-06
Application #
9417464
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
OH, Youngsuk
Project Start
Project End
Budget Start
2018-01-01
Budget End
2019-06-30
Support Year
6
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Medical College of Wisconsin
Department
Type
DUNS #
937639060
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Chuppa, Sandra; Liang, Mingyu; Liu, Pengyuan et al. (2018) MicroRNA-21 regulates peroxisome proliferator-activated receptor alpha, a molecular mechanism of cardiac pathology in Cardiorenal Syndrome Type 4. Kidney Int 93:375-389
Evans, Louise C; Dayton, Alex; Yang, Chun et al. (2018) Transcriptomic analysis reveals inflammatory and metabolic pathways that are regulated by renal perfusion pressure in the outer medulla of Dahl-S rats. Physiol Genomics 50:440-447
Abais-Battad, Justine M; Mattson, David L (2018) The Influence of Dietary Protein on Dahl Salt-Sensitive Hypertension: a Potential Role for Gut Microbiota. Am J Physiol Regul Integr Comp Physiol :
Staruschenko, Alexander (2018) Beneficial Effects of High Potassium: Contribution of Renal Basolateral K+ Channels. Hypertension 71:1015-1022
Cheng, Yuan; Song, Haiying; Pan, Xiaoqing et al. (2018) Urinary Metabolites Associated with Blood Pressure on a Low- or High-Sodium Diet. Theranostics 8:1468-1480
Kumar, Vikash; Evans, Louise C; Kurth, Theresa et al. (2018) Therapeutic Suppression of mTOR (Mammalian Target of Rapamycin) Signaling Prevents and Reverses Salt-Induced Hypertension and Kidney Injury in Dahl Salt-Sensitive Rats. Hypertension :HYPERTENSIONAHA11812378
Cowley Jr, Allen W (2018) Chrm3 Gene and M3 Muscarinic Receptors Contribute to Salt-Sensitive Hypertension. Hypertension 72:588-591
Palygin, Oleg; Pochynyuk, Oleh; Staruschenko, Alexander (2018) Distal tubule basolateral potassium channels: cellular and molecular mechanisms of regulation. Curr Opin Nephrol Hypertens 27:373-378
Ilatovskaya, Daria V; Blass, Gregory; Palygin, Oleg et al. (2018) A NOX4/TRPC6 Pathway in Podocyte Calcium Regulation and Renal Damage in Diabetic Kidney Disease. J Am Soc Nephrol 29:1917-1927
Mattson, David L (2018) Heat stress nephropathy and hyperuricemia. Am J Physiol Renal Physiol 315:F757-F758

Showing the most recent 10 out of 48 publications