Inter-cellular communication between cells within a tissue environment is fundamentally important for many physiological processes. Channels and transmembrane transporters that conduct ions and other molecules across the plasma membrane in healthy living cells are also linked to pathologies of the cardiovascular and respiratory systems. Extracellular nucleltides (such as ATP) and their derivatires critically influence many aspects of vascular physiology such as vasoconstriction and blood pressure regulation, as well disease states such as metabolic syndromes. Recent exciting series of observations suggest that the pannexin proteins form channels on the plasma membrane, and by permeating ions and/or the release of nucleotides in a very regulated manner, these pannexin channels allow cells to communicate with other cells. Consistent with this, altered expression of pannexin channels have been linked to cardovascular and metabolic disorders. On an independent and inter-related set of observations, the pannexin channels also play a role in releasing nucleotides from early stage apoptotic cells that appear critical for communicating with phagocytes and in turn promoting prompt corpse removal. Since, failed clearance of dying cells is linked to atherosclerosis and airway inflammation, pannexin channels likely also play a role in regulating inflammation within tissues. The central hypothesis tested via this P01 application is that pannexin channels sit at a critical interphase between normal homeostasis within the cardiovascular system, and the disease states leading inflammation, atherosclerosis, and hypertension. The four projects that comprise this proposal address the role of pannexin channels as follows. Project 1 (Ravichandran) addresses the role of pannexin channels in cell death and recruitment of monocytes during atherosclerosis, cholesterol efflux, and in tissue inflammation; Project 2 (Isakson) addresses how pannexin channels in smooth muscle cells contribute to vasoconstriction in resistance vessels to regulate blood pressure and how this is altered in obesity; Project 3 (Leitinger) addresses how pannexin channels regulate adipocyte functions and the inflammation induced by dying adipocytes in obesity, insulin resistance and hypertension; Project 4 (Bayliss) addresses molecular mechanisms of pannexin channel activation in physiological and diseased states. With the combination of mouse models and ex vivo studies, and mechanistic approaches, and the preliminary identification of new compounds capable of altering Panx1 function, we expect to provide exciting new insights on pannexin channels and purinergic signaling in vascular physiology and hypertension, and provide the basis for novel treatment strategies targeting the regulated opening and closing of these channels in specific disease states. We expect this would have a broad impact to cardiovascular, metabolic, and respiratory diseases.

Public Health Relevance

Overall Program Project - Project Narrative Signaling via extracellular nucleotides (purinergic signaling) critically regulates vascular physiology and inflammation in tissues. One mode by which cells release nucleotides is via the newly discovered pannexin channels. Recent genome wide expression analyses have linked altered expression of Pannexin 1 to atherosclerosis, vascular disease, and airway inflammation. Therefore, the studies of this P01 project are expected to mechanistically define the specific roles played by the pannexin channels in vascular and adipose tissue inflammation, and in turn, identify potential points for therapeutic targeting of these channels in these human diease conditions.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Virginia
United States
Zip Code
Olmez, Inan; Brenneman, Breanna; Xiao, Aizhen et al. (2017) Combined CDK4/6 and mTOR Inhibition Is Synergistic against Glioblastoma via Multiple Mechanisms. Clin Cancer Res 23:6958-6968
Good, Miranda E; Chiu, Yu-Hsin; Poon, Ivan K et al. (2017) Pannexin 1 Channels as an Unexpected New Target of the Anti-Hypertensive Drug Spironolactone. Circ Res :
Adamson, Samantha E; Montgomery, Garren; Seaman, Scott A et al. (2017) Myeloid P2Y2 receptor promotes acute inflammation but is dispensable for chronic high-fat diet-induced metabolic dysfunction. Purinergic Signal :
Mercadante, Emily R; Lorenz, Ulrike M (2017) T Cells Deficient in the Tyrosine Phosphatase SHP-1 Resist Suppression by Regulatory T Cells. J Immunol 199:129-137
Penberthy, Kristen K; Rival, Claudia; Shankman, Laura S et al. (2017) Context-dependent compensation among phosphatidylserine-recognition receptors. Sci Rep 7:14623
Begandt, Daniela; Good, Miranda E; Keller, Alex S et al. (2017) Pannexin channel and connexin hemichannel expression in vascular function and inflammation. BMC Cell Biol 18:2
Chiu, Yu-Hsin; Jin, Xueyao; Medina, Christopher B et al. (2017) A quantized mechanism for activation of pannexin channels. Nat Commun 8:14324
Weaver, Janelle L; Arandjelovic, Sanja; Brown, Gregory et al. (2017) Hematopoietic pannexin 1 function is critical for neuropathic pain. Sci Rep 7:42550
Elliott, Michael R; Ravichandran, Kodi S (2016) The Dynamics of Apoptotic Cell Clearance. Dev Cell 38:147-60
Keller 4th, T C Stevenson; Butcher, Joshua T; Broseghini-Filho, Gilson BrĂ¡s et al. (2016) Modulating Vascular Hemodynamics With an Alpha Globin Mimetic Peptide (Hb?X). Hypertension 68:1494-1503

Showing the most recent 10 out of 23 publications