Vascular injury and vessel wall diseases serve as triggers for the accumulation of platelets and fibrin, sometimes with disastrous consequences. Platelet activation mechanisms are commonly studied in vitro using tools that work best at the level of individual platelets or small groups of platelets. Here we have made a paradigm shift, viewing both hemostatic and pathologic thrombus formation as the product of large platelet populations and combining observational, experimental and computational approaches to understand the relationships among those populations. Our overall goal is to obtain new insights into platelet activation as it occurs in vivo and identify better ways to limit thrombosis without overly impairing hemostasis. Our premise is that as platelets begin to accumulate at a site of injury, they alter their local microenvironment in ways that affect subsequent events. We and others have shown previously that there are regional differences in the extent of platelet activation within hemostatic thrombi, resulting in a core of fully-activated, closely-packed platelets overlaid by a shell of less-activated platelets. Here we hope to understand how these regional differences arise and influence subsequent thrombus growth and stability.
In Aim #1 we will apply novel technologies to determine how regional differences in platelet packing density, intrathrombus solute transport and agonist distribution arise and interact with the platelet signaling network.
In Aim #2, we will collaborate with fellow PPG members, Sriram Krishnaswamy and Rodney Camire, to test the hypothesis that thrombus architecture, as well as the location of procoagulant membranes, dictate the distribution of thrombin and fibrin during the hemostatic response. Finally, in Aim #3 we will combine observational and experimental data from Aims #1 and #2 with computational methods to test hypotheses about thrombus formation that cannot be addressed by experimental approaches alone, including the hypothesis that the formation of a core-and-shell architecture is a biological mechanism evolved to limit thrombus growth and prevent vascular occlusion. All three aims are built upon considerable preliminary data and take advantage of new and existing methods to study thrombus formation. They will also take advantage of the collective expertise of a team of investigators with strong backgrounds in platelet biology, mouse models of hemostasis, methods development, and the use of computational and applied engineering approaches to answer biological questions.

Public Health Relevance

Project 3 - Narrative Platelet activation is part of the normal response to vascular injury, producing a plug that limits blood loss. Thrombosis occurs when platelets are activated inappropriately, blocking blood flow and damaging tissues such as the heart and brain. The goal of this project is to better understand the molecular basis of platelet activation and translate that understanding into improved methods to prevent thrombosis.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Fong, Karen P; Zhu, Hua; Span, Lisa M et al. (2016) Directly Activating the Integrin αIIbβ3 Initiates Outside-In Signaling by Causing αIIbβ3 Clustering. J Biol Chem 291:11706-16
Lee, R H; Bergmeier, W (2016) Platelet immunoreceptor tyrosine-based activation motif (ITAM) and hemITAM signaling and vascular integrity in inflammation and development. J Thromb Haemost 14:645-54
Stefanini, Lucia; Bergmeier, Wolfgang (2016) RAP1-GTPase signaling and platelet function. J Mol Med (Berl) 94:13-9
Lozano, María Luisa; Cook, Aaron; Bastida, José María et al. (2016) Novel mutations in RASGRP2, which encodes CalDAG-GEFI, abrogate Rap1 activation, causing platelet dysfunction. Blood 128:1282-9
Zhou, Zinan; Tang, Alan T; Wong, Weng-Yew et al. (2016) Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature 532:122-6
Welsh, John D; Muthard, Ryan W; Stalker, Timothy J et al. (2016) A systems approach to hemostasis: 4. How hemostatic thrombi limit the loss of plasma-borne molecules from the microvasculature. Blood 127:1598-605
Geddings, J E; Hisada, Y; Boulaftali, Y et al. (2016) Tissue factor-positive tumor microvesicles activate platelets and enhance thrombosis in mice. J Thromb Haemost 14:153-66
Piatt, Raymond; Paul, David S; Lee, Robert H et al. (2016) Mice Expressing Low Levels of CalDAG-GEFI Exhibit Markedly Impaired Platelet Activation With Minor Impact on Hemostasis. Arterioscler Thromb Vasc Biol 36:1838-46
Ivanciu, L; Stalker, T J (2015) Spatiotemporal regulation of coagulation and platelet activation during the hemostatic response in vivo. J Thromb Haemost 13:1949-59
Sayani, Farzana A; Abrams, Charles S (2015) How I treat refractory thrombotic thrombocytopenic purpura. Blood 125:3860-7

Showing the most recent 10 out of 28 publications