Contemporary views indicate that proteins are ensembles of pre-existing populations that undergo significant structural fluctuation at room temperature. Thus, allosteric effectors act by shifting the equilibrium between these conformational and dynamic states. Consistent with these views, we found that purified llb 3, the platelet receptor for fibrinogen that mediates platelet aggregation, is an ensemble of active and inactive molecules. Further, using optical tweezers to measure the nanomechanics of fibrinogen binding to and unbinding from IIb 3, we found that active IIb 3 is present in a minimum of two inter-convertible conformations that differ in their affinity for fibrinogen and in the mechanical stability of the complexes they form with fibrinogen. Accordingly, we postulate that by modulating the active state of IIb 3 with allosteric inhibitors, it can be stabilized in its lower affinity conformation, impairing the formation of more mechanically-stable thrombi in regions of high shear, such as those present in stenotic arteries, but at the same time, preserving sufficient platelet function for ordinary hemostasis. Thus, the objectives of this project are to relate IIb 3 structure to its dynamic behavior, with the ultimate goal of developing novel allosteric IIb 3 inhibitors that attenuate platelet aggregation by preventing the formation of higher affinity, more mechanically stable, IIb 3-fibrinogen complexes. The Project consists of two Specific Aims.
In Specific Aim 1, we will identify the regions of active IIb 3 involved in its allosteric conversion from a lower affinity conformation to the higher affinity conformation that forms more mechanically stable complexes with fibrinogen and fibrin. To identify targets for allosteric inhibition, the effect of mutations in these regions on the lifetime and strength of IIb 3-fibrinogen bonds will be measured at the single molecule level using optical tweezers. We will then experimentally screen chemical libraries and computationally screen molecular data bases for potential allosteric inhibitors whose activity will be verified in vitro using the optical tweezers and in vivo using mouse thrombosis models. The relative contributions of fibrin and fibrinogen to the formation of platelet thrombi will also be addressed, as will the role of protein disulfide isomerase in allosteric IIb 3 regulation.
In Specific Aim 2, we will study the dynamic behavior of the IIb and 3 cytosolic domains, testing the hypothesis that IIb 3 activation by the cytoskeletal proteins talin-1 and kindlin-3 is a cooperative event;the association of either protein with its binding site on 3 cytosolic domain occurs at the thermodynamic expense of disrupting favorable 3-membrane binding interactions. Biophysical experiments will be performed to determine the order and synergy of talin and kindlin binding, the role of membrane phospholipids in the process, and whether the result obtained by studying IIb 3 can be extrapolated to other regulated integrins.

Public Health Relevance

PROJECT 4: Relevance Fibrinogen and von Willebrand factor binding to the active form of the integrin IIb 3 is responsible for the platelet stickiness that quenches bleeding after trauma and causes the thrombi that complicate atherosclerosis. However, current intravenous IIb 3 inhibitors have limited clinical applicability and oral inhibitors were associated with excess mortality. The goals of this project are to determine how platelets regulate IIb 3 function and to use this information to design novel, effective, and safer IIb 3 inhibitors.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL120846-01A1
Application #
8742312
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2014-08-08
Budget End
2015-06-30
Support Year
1
Fiscal Year
2014
Total Cost
$465,312
Indirect Cost
$116,932
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Fong, Karen P; Zhu, Hua; Span, Lisa M et al. (2016) Directly Activating the Integrin αIIbβ3 Initiates Outside-In Signaling by Causing αIIbβ3 Clustering. J Biol Chem 291:11706-16
Lee, R H; Bergmeier, W (2016) Platelet immunoreceptor tyrosine-based activation motif (ITAM) and hemITAM signaling and vascular integrity in inflammation and development. J Thromb Haemost 14:645-54
Stefanini, Lucia; Bergmeier, Wolfgang (2016) RAP1-GTPase signaling and platelet function. J Mol Med (Berl) 94:13-9
Lozano, María Luisa; Cook, Aaron; Bastida, José María et al. (2016) Novel mutations in RASGRP2, which encodes CalDAG-GEFI, abrogate Rap1 activation, causing platelet dysfunction. Blood 128:1282-9
Zhou, Zinan; Tang, Alan T; Wong, Weng-Yew et al. (2016) Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature 532:122-6
Welsh, John D; Muthard, Ryan W; Stalker, Timothy J et al. (2016) A systems approach to hemostasis: 4. How hemostatic thrombi limit the loss of plasma-borne molecules from the microvasculature. Blood 127:1598-605
Geddings, J E; Hisada, Y; Boulaftali, Y et al. (2016) Tissue factor-positive tumor microvesicles activate platelets and enhance thrombosis in mice. J Thromb Haemost 14:153-66
Piatt, Raymond; Paul, David S; Lee, Robert H et al. (2016) Mice Expressing Low Levels of CalDAG-GEFI Exhibit Markedly Impaired Platelet Activation With Minor Impact on Hemostasis. Arterioscler Thromb Vasc Biol 36:1838-46
Ivanciu, L; Stalker, T J (2015) Spatiotemporal regulation of coagulation and platelet activation during the hemostatic response in vivo. J Thromb Haemost 13:1949-59
Sayani, Farzana A; Abrams, Charles S (2015) How I treat refractory thrombotic thrombocytopenic purpura. Blood 125:3860-7

Showing the most recent 10 out of 28 publications