In animal models of human cognitive impairment there are disturbances in activity-induced remodeling of the dendritic spine actin cytoskeleton and processes of long term potentiation (LTP) that depend upon it. Our program has shown that Brain-derived neurotrophic factor (BDNF) can rescue both processes in several models. This suggests that spine actin remodeling is a final common path impacted in various conditions of cognitive dysfunction and that, through effects on this process, BDNF can offset cognitive deficits. Project 1 will test this for the Fmr1-KO mouse model of Fragile-X Syndrome (FXS) (a mental retardation syndrome with susceptibility for autism). The Fmr1-KOs have abnormal LTP threshold and stabilization. We find they also lack of normal activity-induced Rac GTPase >p21 activated kinase (PAK) signaling proposed to mediate F-actin and LTP stabilization, but BDNF infusion can still stabilize potentiation in the mutants. Proposed studies will use acute hippocampal slices and in vivo preparations to understand deficiencies in F-actin regulation, and to test an ampakine-BDNF strategy for restoration of function in Fmr1-KOs.
Aim 1 will test if failed Rac activation accounts for signaling and LTP impairments in the KOs and if this is secondary to changes in synaptic integrin function.
Aim 2 will test if BDNF infusion restores spine signaling through PAK or drives other systems to effect stabilization of spine F-actin and LTP in the KOs.
Aim 3 will then test if in vivo treatments (ampakine or ampakine+MPEP) that increase BDNF protein content similarly restore actin regulation and LTP as assessed ex-vivo.
Aim 4 will use an unsupervised learning paradigm to test if upregulating BDNF leads to heightened signaling through BDNF's TrkB receptor and a normalization of exploratory behavior and learning in the mutants;these studies will also test if the topography of synapse activation is abnormal in the mutants and normalized in association with increases in BDNF signaling. Finally, Aim 5 will test if TBS-induced LTP, and steps in actin signaling that are perturbed in the Fmr1-KO mice, are disturbed in other animal models of autistic phenotype and corrected by BDNF: this work will evaluate effects in the BTBR T[+] tf/J mice and Tuberous Sclerosis complex model mice. Together these studies will identify mechanisms underlying deficits in LTP stabilization in FXS model mice, determine if the same processes are disturbed in other mouse strains with features of autism, and test if increasing endogenous BDNF is an effective therapeutic strategy for correcting impairments in the cellular mechanisms of learning and memory in models of cognitive conditions associated with autism.

Public Health Relevance

This project will test if mice with autistic behavioral traits have impairments to the same biological mechanisms underlying learning and memory, as occur in other syndromes of cognitive dysfunction and if well-tolerated drugs causing the brain to increase production of Brain derived neurotrophic factor can normalize these biological mechanisms and behavior in these animals. This includes tests to determine if the drugs correct behavioral abnormalities in the mouse model of Fragile X mental retardation syndrome.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Irvine
United States
Zip Code
Ozkan, Emin D; Creson, Thomas K; Kramár, Enikö A et al. (2014) Reduced cognition in Syngap1 mutants is caused by isolated damage within developing forebrain excitatory neurons. Neuron 82:1317-33
Lynch, Gary; Cox, Conor D; Gall, Christine M (2014) Pharmacological enhancement of memory or cognition in normal subjects. Front Syst Neurosci 8:90
Seese, Ronald R; Maske, Anna R; Lynch, Gary et al. (2014) Long-term memory deficits are associated with elevated synaptic ERK1/2 activation and reversed by mGluR5 antagonism in an animal model of autism. Neuropsychopharmacology 39:1664-73
Wang, Yubin; Zhu, Guoqi; Briz, Victor et al. (2014) A molecular brake controls the magnitude of long-term potentiation. Nat Commun 5:3051
Regev, Limor; Baram, Tallie Z (2014) Corticotropin releasing factor in neuroplasticity. Front Neuroendocrinol 35:171-9
Maras, P M; Molet, J; Chen, Y et al. (2014) Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress. Mol Psychiatry 19:811-22
Briz, Victor; Baudry, Michel (2014) Estrogen Regulates Protein Synthesis and Actin Polymerization in Hippocampal Neurons through Different Molecular Mechanisms. Front Endocrinol (Lausanne) 5:22
Cox, Conor D; Rex, Christopher S; Palmer, Linda C et al. (2014) A map of LTP-related synaptic changes in dorsal hippocampus following unsupervised learning. J Neurosci 34:3033-41
Riazifar, Hamidreza; Jia, Yousheng; Chen, Jing et al. (2014) Chemically induced specification of retinal ganglion cells from human embryonic and induced pluripotent stem cells. Stem Cells Transl Med 3:424-32
Baudry, Michel; Bi, Xiaoning (2013) Learning and memory: an emergent property of cell motility. Neurobiol Learn Mem 104:64-72

Showing the most recent 10 out of 60 publications