An advantage of conducting research within a coordinated Program Project is the ability to create core facilities to (i) efficiently and economically share resources and administration support, (ii) provide infrastructure for the scientific objectives of the program, (iii) provide mechanisms for disseminating results and facilitating discussions within the group, and (iv) coordinate interactions with outside investigators to obtain critical evaluation, technical advice and intellectual input to keep the work on track and at the cutting edge of technologies in the field. To this end an Analytical, Administrative and Animal/Reagent Core (Core A) will be created and directed by Dr. Christine Gall. Core A will address 4 specific aims.
Aim 1 will be to maintain an Analytical Core for Microscopy, Electrophysiology, Behavior and Assay functions. Studies within Projects 1-4 entail analyses of long term potentiation (LTP) in hippocampal slices, localized signaling to actin, modulating endogenous BDNF protein content, and evaluation of treatment effects on unsupervised learning. This will be accomplished using Analytical Core facilities and personnel for microscopy-image analysis, electrophysiology, behavioral analysis (unsupervised learning) and protein assays.
Aim 2 will be to support Animal and Reagent functions. Core personnel will coordinate purchases of reagents and ampakines, support mouse colonies employed for UCl Projects, and perform genotyping.
Aim 3 will be to manage collaborations and integration of research among Project laboratories, and provide input from internal and external advisory boards (Administration). This includes coordinating both research activities among the projects for access to key analytical facilities (e.g., microscopic, electrophysiological and behavioral facilities and staff) and Program Project collaborative meetings. The Core will also convene meetings with Internal and External Advisory Boards, and seminar speakers.
Aim 4 is to provide general administrative support and computer assistance for all program investigators (Administration). This includes general administrative support for grants management, coordinating seminars, oversight of animal use in Core A, supervision of Core personnel, and maintenance of computer servers for Program activities. Overall the Core facilities and functions will provide critical integration of research within the Projects and will support technical platforms that are critical for reaching project goals.

Public Health Relevance

The program project will test if there are common neurobiological processes underlying cognitive impairments in different animal models and if up-regulating BDNF is a broadly effective therapeutic strategy. To meet these program goals is critical that the different subprojects use the same treatments and measures. The Core will assure this uniformity and will provide mechanisms for sharing critical analytical facilities, technical expertise, and research advances throughout the program.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Irvine
United States
Zip Code
Ozkan, Emin D; Creson, Thomas K; Kramár, Enikö A et al. (2014) Reduced cognition in Syngap1 mutants is caused by isolated damage within developing forebrain excitatory neurons. Neuron 82:1317-33
Lynch, Gary; Cox, Conor D; Gall, Christine M (2014) Pharmacological enhancement of memory or cognition in normal subjects. Front Syst Neurosci 8:90
Seese, Ronald R; Maske, Anna R; Lynch, Gary et al. (2014) Long-term memory deficits are associated with elevated synaptic ERK1/2 activation and reversed by mGluR5 antagonism in an animal model of autism. Neuropsychopharmacology 39:1664-73
Wang, Yubin; Zhu, Guoqi; Briz, Victor et al. (2014) A molecular brake controls the magnitude of long-term potentiation. Nat Commun 5:3051
Regev, Limor; Baram, Tallie Z (2014) Corticotropin releasing factor in neuroplasticity. Front Neuroendocrinol 35:171-9
Maras, P M; Molet, J; Chen, Y et al. (2014) Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress. Mol Psychiatry 19:811-22
Briz, Victor; Baudry, Michel (2014) Estrogen Regulates Protein Synthesis and Actin Polymerization in Hippocampal Neurons through Different Molecular Mechanisms. Front Endocrinol (Lausanne) 5:22
Cox, Conor D; Rex, Christopher S; Palmer, Linda C et al. (2014) A map of LTP-related synaptic changes in dorsal hippocampus following unsupervised learning. J Neurosci 34:3033-41
Riazifar, Hamidreza; Jia, Yousheng; Chen, Jing et al. (2014) Chemically induced specification of retinal ganglion cells from human embryonic and induced pluripotent stem cells. Stem Cells Transl Med 3:424-32
Baudry, Michel; Bi, Xiaoning (2013) Learning and memory: an emergent property of cell motility. Neurobiol Learn Mem 104:64-72

Showing the most recent 10 out of 60 publications