In animal models of human cognitive impairment there are disturbances in activity-induced remodeling of the dendritic spine actin cytoskeleton and processes of long term potentiation (LTP) that depend upon it. Our program has shown that Brain-derived neurotrophic factor (BDNF) can rescue both processes in several models. This suggests that spine actin remodeling is a final common path impacted in various conditions of cognitive dysfunction and that, through effects on this process, BDNF can offset cognitive deficits. Project 1 will test this for the Fmr1-KO mouse model of Fragile-X Syndrome (FXS) (a mental retardation syndrome with susceptibility for autism). The Fmr1-KOs have abnormal LTP threshold and stabilization. We find they also lack of normal activity-induced Rac GTPase >p21 activated kinase (PAK) signaling proposed to mediate F-actin and LTP stabilization, but BDNF infusion can still stabilize potentiation in the mutants. Proposed studies will use acute hippocampal slices and in vivo preparations to understand deficiencies in F-actin regulation, and to test an ampakine-BDNF strategy for restoration of function in Fmr1-KOs.
Aim 1 will test if failed Rac activation accounts for signaling and LTP impairments in the KOs and if this is secondary to changes in synaptic integrin function.
Aim 2 will test if BDNF infusion restores spine signaling through PAK or drives other systems to effect stabilization of spine F-actin and LTP in the KOs.
Aim 3 will then test if in vivo treatments (ampakine or ampakine+MPEP) that increase BDNF protein content similarly restore actin regulation and LTP as assessed ex-vivo.
Aim 4 will use an unsupervised learning paradigm to test if upregulating BDNF leads to heightened signaling through BDNF's TrkB receptor and a normalization of exploratory behavior and learning in the mutants;these studies will also test if the topography of synapse activation is abnormal in the mutants and normalized in association with increases in BDNF signaling. Finally, Aim 5 will test if TBS-induced LTP, and steps in actin signaling that are perturbed in the Fmr1-KO mice, are disturbed in other animal models of autistic phenotype and corrected by BDNF: this work will evaluate effects in the BTBR T[+] tf/J mice and Tuberous Sclerosis complex model mice. Together these studies will identify mechanisms underlying deficits in LTP stabilization in FXS model mice, determine if the same processes are disturbed in other mouse strains with features of autism, and test if increasing endogenous BDNF is an effective therapeutic strategy for correcting impairments in the cellular mechanisms of learning and memory in models of cognitive conditions associated with autism.

Public Health Relevance

This project will test if mice with autistic behavioral traits have impairments to the same biological mechanisms underlying learning and memory, as occur in other syndromes of cognitive dysfunction and if well-tolerated drugs causing the brain to increase production of Brain derived neurotrophic factor can normalize these biological mechanisms and behavior in these animals. This includes tests to determine if the drugs correct behavioral abnormalities in the mouse model of Fragile X mental retardation syndrome.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
5P01NS045260-11
Application #
8723898
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
11
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Irvine
Department
Type
DUNS #
City
Irvine
State
CA
Country
United States
Zip Code
92697
Wang, Weisheng; Le, Aliza A; Hou, Bowen et al. (2018) Memory-Related Synaptic Plasticity Is Sexually Dimorphic in Rodent Hippocampus. J Neurosci 38:7935-7951
Wang, W; Cox, B M; Jia, Y et al. (2018) Treating a novel plasticity defect rescues episodic memory in Fragile X model mice. Mol Psychiatry 23:1798-1806
Wang, Yubin; Hall, Randy A; Lee, Moses et al. (2017) The tyrosine phosphatase PTPN13/FAP-1 links calpain-2, TBI and tau tyrosine phosphorylation. Sci Rep 7:11771
Cox, Conor D; Palmer, Linda C; Pham, Danielle T et al. (2017) Experiential learning in rodents: past experience enables rapid learning and localized encoding in hippocampus. Learn Mem 24:569-579
Prieto, G Aleph; Trieu, Brian H; Dang, Cindy T et al. (2017) Pharmacological Rescue of Long-Term Potentiation in Alzheimer Diseased Synapses. J Neurosci 37:1197-1212
Zhu, Guoqi; Briz, Victor; Seinfeld, Jeff et al. (2017) Calpain-1 deletion impairs mGluR-dependent LTD and fear memory extinction. Sci Rep 7:42788
Baudry, Michel; Bi, Xiaoning (2016) Calpain-1 and Calpain-2: The Yin and Yang of Synaptic Plasticity and Neurodegeneration. Trends Neurosci 39:235-245
Sun, Jiandong; Liu, Yan; Tran, Jennifer et al. (2016) mTORC1-S6K1 inhibition or mTORC2 activation improves hippocampal synaptic plasticity and learning in Angelman syndrome mice. Cell Mol Life Sci 73:4303-4314
Liu, Yan; Wang, Yubin; Zhu, Guoqi et al. (2016) A calpain-2 selective inhibitor enhances learning & memory by prolonging ERK activation. Neuropharmacology 105:471-477
Liu, Yan; Sun, Jiandong; Wang, Yubin et al. (2016) Deleting both PHLPP1 and CANP1 rescues impairments in long-term potentiation and learning in both single knockout mice. Learn Mem 23:399-404

Showing the most recent 10 out of 100 publications