The long-term goal of Project 2 is to develop new targets for the treatment of chronic pain. Specifically, our research has been focusing on those core transcriptional programs that control nociceptor phenotypes and pain behaviors. In the previous funding cycle, we have compiled a genome-scale analysis of the expression of transcription factors (TFs) in the developing nervous system. From this screen, we identified a small number of TFs expressed in the pain circuitry. Subsequent genetic studies demonstrated that the runt class transcripfion factor Runxl is a key regulator of nociceptor development, and mice lacking Runxl exhibit a marked deficit in inflammatory pain and neuropathic pain. The experimental plan of this project is built on these preliminary studies, and we have three specific aims.
Aim 1 is to determine the roles of Runxl in controlling two types of cancer pain: pain induced by tumor growth or by chemotherapy.
This aim i s built on the facts that cancer pain is composed of both inflammatory and neuropathic pain components, and Runxl is required for these two types of chronic pain.
Aim 2 is to determine Runxl targets that serve as candidates critical for neuropathic pain.
This aim i s built on the observation that Runxl activity at embryonic stages, rather than at postnatal stages, is required for neuropathic pain, implying that early Runxl targets are later required for the development of this type of chronic pain.
Aim 3 is to determine signaling pathways that modulate Runxl expression in adult nociceptors.
This aim i s built on the finding that persistent Runxl activity is required for inflammatory pain. Accordingly, compounds capable of extinguishing Runxl expression may serve as new targets for inflammatory pain treatment. The studies of these aims will be enabled by the availability of various Runxl mutant mice and from the """"""""Druggable Mechanisms Core"""""""" (the DMC), including high throughput single molecule DNA sequencing and bioinformatics analyses.

Public Health Relevance

Pain management remains a major nnedical problem in a variety of human diseases. Chronic pain, moreover, is associated with worse disease outcome and depression. In the fullness of time, the work may allow us to identify new targets for chronic pain treatment.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Mardinly, A R; Spiegel, I; Patrizi, A et al. (2016) Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons. Nature 531:371-5
Lou, Shan; Pan, Xiaoxin; Huang, Tianwen et al. (2015) Incoherent feed-forward regulatory loops control segregation of C-mechanoreceptors, nociceptors, and pruriceptors. J Neurosci 35:5317-29
Labidi-Galy, S I; Clauss, A; Ng, V et al. (2015) Elafin drives poor outcome in high-grade serous ovarian cancers and basal-like breast tumors. Oncogene 34:373-83
Doherty, Michael F; Adelmant, Guillaume; Cecchetelli, Alyssa D et al. (2014) Proteomic analysis reveals CACN-1 is a component of the spliceosome in Caenorhabditis elegans. G3 (Bethesda) 4:1555-64
Kwiatkowski, Nicholas; Zhang, Tinghu; Rahl, Peter B et al. (2014) Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511:616-20
Ficarro, Scott B; Biagi, Jessica M; Wang, Jinhua et al. (2014) Protected amine labels: a versatile molecular scaffold for multiplexed nominal mass and sub-Da isotopologue quantitative proteomic reagents. J Am Soc Mass Spectrom 25:636-50
Bergthold, Guillaume; Bandopadhayay, Pratiti; Bi, Wenya Linda et al. (2014) Pediatric low-grade gliomas: how modern biology reshapes the clinical field. Biochim Biophys Acta 1845:294-307
Lim, Sang Min; Westover, Kenneth D; Ficarro, Scott B et al. (2014) Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Angew Chem Int Ed Engl 53:199-204
Lu, Yu; Loh, Yuin-Han; Li, Hu et al. (2014) Alternative splicing of MBD2 supports self-renewal in human pluripotent stem cells. Cell Stem Cell 15:92-101
Silbereis, John C; Nobuta, Hiroko; Tsai, Hui-Hsin et al. (2014) Olig1 function is required to repress dlx1/2 and interneuron production in Mammalian brain. Neuron 81:574-87

Showing the most recent 10 out of 50 publications