Aggregation and fibrillation of SODl have been implicated in disease mechanisms of Amyotrophic Lateral Sclerosis (ALS), and it is a major new goal of this Program Project renewal to develop better biological assays to study the toxicity of these multimeric forms of SODl in systems that will be more relevant to the disease in humans. In Project 2 we further develop and use a human cell culture system that closely models important cell biological aspects of motor neuron degeneration?our recently developed human embryonic stem cell-derived motor neuron (HESC-MN) system. The cells have distinct advantages over other model systems as they represent the major cell type that degenerates in ALS and they are fully human. The cells express identifying neuronal markers, exhibit electrophysiological function typical for mature motor neurons, and can be co-cultured with other neuronal and non-neuronal cells. Transfection of these cells to express ALS-SODl proteins causes deleterious effeds on cell survival and morphology. Importantly for this project, we have recently shown that exogenously added ALS-SODl protein multimers are taken up quite well. We will utilize these cells to study the toxicity of SODl protein multimers and aggregates at different stages of their formation and relate it to the progression of motor neuron degeneration. This research plan outlines a highly collaborative, step-by-step approach to evaluate spontaneous and induced mutant and WT SODl aggregate formation in motor neurons, followed by an investigation of the consequences of SODl aggregates on neurodegenerative mechanisms and, finally, by using pharmacological inhibitors of SODl aggregation to investigate whether reduced SODl aggregation can prevent motor neuron death.

Public Health Relevance

Functional HESC-MNs expressing ALS-SODl mutant proteins provide an unparalleled opportunity to explore why various multimeric forms of mutant SODl are toxic to motor neurons. The project will move from the urgently needed improved understanding of intracellular SODl multimerization as a disease pathway of ALS to defining a new disease model system for designing and testing new ALS therapeutics.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Los Angeles
United States
Zip Code
Ming, Li-June; Valentine, Joan Selverstone (2014) Insights into SOD1-linked amyotrophic lateral sclerosis from NMR studies of Ni(2+)- and other metal-ion-substituted wild-type copper-zinc superoxide dismutases. J Biol Inorg Chem 19:647-57
Brown, Hilda H; Borchelt, David R (2014) Analysis of mutant SOD1 electrophoretic mobility by Blue Native gel electrophoresis; evidence for soluble multimeric assemblies. PLoS One 9:e104583
Ayers, Jacob; Lelie, Herman; Workman, Aron et al. (2014) Distinctive features of the D101N and D101G variants of superoxide dismutase 1; two mutations that produce rapidly progressing motor neuron disease. J Neurochem 128:305-14
Ivanova, Magdalena I; Sievers, Stuart A; Guenther, Elizabeth L et al. (2014) Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS. Proc Natl Acad Sci U S A 111:197-201
Sheng, Yuewei; Abreu, Isabel A; Cabelli, Diane E et al. (2014) Superoxide dismutases and superoxide reductases. Chem Rev 114:3854-918
Ayers, Jacob I; Xu, Guilian; Pletnikova, Olga et al. (2014) Conformational specificity of the C4F6 SOD1 antibody; low frequency of reactivity in sporadic ALS cases. Acta Neuropathol Commun 2:55
Chan, Pik K; Chattopadhyay, Madhuri; Sharma, Shivani et al. (2013) Structural similarity of wild-type and ALS-mutant superoxide dismutase-1 fibrils using limited proteolysis and atomic force microscopy. Proc Natl Acad Sci U S A 110:10934-9
Rutherford, Nicola J; Lewis, Jada; Clippinger, Amy K et al. (2013) Unbiased screen reveals ubiquilin-1 and -2 highly associated with huntingtin inclusions. Brain Res 1524:62-73
Prudencio, Mercedes; Lelie, Herman; Brown, Hilda H et al. (2012) A novel variant of human superoxide dismutase 1 harboring amyotrophic lateral sclerosis-associated and experimental mutations in metal-binding residues and free cysteines lacks toxicity in vivo. J Neurochem 121:475-85
Lelie, Herman L; Liba, Amir; Bourassa, Megan W et al. (2011) Copper and zinc metallation status of copper-zinc superoxide dismutase from amyotrophic lateral sclerosis transgenic mice. J Biol Chem 286:2795-806

Showing the most recent 10 out of 33 publications