The histology and imaging core will provide essential services to the three projects that make up this program project grant. Specifically, it will section spinal cord specimens, store sections, perform routine immunohistological stains, perform routine tracing, histological stains and establish new protocols where needed. The Core will provide for the skills and equipment necessary to perform imaging and complex stereological counts and confocal analysis of transplants in the spinal cord. This equipment is expensive and highly specialized, thus making such a shared arrangement more practical. Dr. Dan Peterson will serve as a consultant in the operation of this core, thereby adding considerable expertise pertaining to confocal and sterology applications;he will also help with the interpretation of spinal cord transplants. The experiments carried out within the program project could not be done efficiently without the services of the Histology and Immunology Core (Core B).

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cedars-Sinai Medical Center
Los Angeles
United States
Zip Code
Nichols, Nicole L; Satriotomo, Irawan; Allen, Latoya L et al. (2017) Mechanisms of Enhanced Phrenic Long-Term Facilitation in SOD1G93A Rats. J Neurosci 37:5834-5845
Nichols, Nicole L; Mitchell, Gordon S (2016) Quantitative assessment of integrated phrenic nerve activity. Respir Physiol Neurobiol 226:81-6
Jones, Jeffrey R; Zhang, Su-Chun (2016) Engineering human cells and tissues through pluripotent stem cells. Curr Opin Biotechnol 40:133-138
Chen, Hong; Qian, Kun; Chen, Wei et al. (2015) Human-derived neural progenitors functionally replace astrocytes in adult mice. J Clin Invest 125:1033-42
Gowing, Geneviève; Shelley, Brandon; Staggenborg, Kevin et al. (2014) Glial cell line-derived neurotrophic factor-secreting human neural progenitors show long-term survival, maturation into astrocytes, and no tumor formation following transplantation into the spinal cord of immunocompromised rats. Neuroreport 25:367-72
Nikodemova, Maria; Small, Alissa L; Smith, Stephanie M C et al. (2014) Spinal but not cortical microglia acquire an atypical phenotype with high VEGF, galectin-3 and osteopontin, and blunted inflammatory responses in ALS rats. Neurobiol Dis 69:43-53
Dale, E A; Ben Mabrouk, F; Mitchell, G S (2014) Unexpected benefits of intermittent hypoxia: enhanced respiratory and nonrespiratory motor function. Physiology (Bethesda) 29:39-48
Nichols, N L; Johnson, R A; Satriotomo, I et al. (2014) Neither serotonin nor adenosine-dependent mechanisms preserve ventilatory capacity in ALS rats. Respir Physiol Neurobiol 197:19-28
Nichols, Nicole L; Gowing, Genevieve; Satriotomo, Irawan et al. (2013) Intermittent hypoxia and stem cell implants preserve breathing capacity in a rodent model of amyotrophic lateral sclerosis. Am J Respir Crit Care Med 187:535-42
Dale, Erica A; Mitchell, Gordon S (2013) Spinal vascular endothelial growth factor (VEGF) and erythropoietin (EPO) induced phrenic motor facilitation after repetitive acute intermittent hypoxia. Respir Physiol Neurobiol 185:481-8

Showing the most recent 10 out of 45 publications