Repeat-Associated Non-ATG Translation in DM1 and DM2 (Project 1)- Ranum Well-established rules of translational initiation have been used as a cornerstone in molecular biology to understand gene expression and to predict the consequences of disease causing mutations. For myotonic dystrophy (DM) and other microsatellite expansion disorders, repeat expansions (e.g., CAG or CTGs) located in predicted coding- and non-coding regions are thought to cause disease by protein gain-, or loss-of- function or RNA gain-of-function mechanisms. In 2001, we showed that myotonic dystrophy type 2 (DM2) is caused by an intronic CCTG*CAGG expansion in CNBP. The apparent non-coding locations of the DM1 and DM2 expansion mutations and the accumulation of RNA foci in both disorders helped to establish that CUGEXP and CCUGEXP RNAs cause dominant RNA effects. While substantial data support RNA gain-of-function contributions to DM, recent discoveries, which fundamentally change our understanding of how disease-causing mutations are expressed, must also now be considered. First, much of the genome is bidirectionally transcribed, including the DM1 CTG'CAG expansion. Therefore, in addition to DM1 CUGEXP transcripts, mutant DM1 CAGEXP transcripts may also play a role in disease. Second, we recently discovered that the canonical rules of translation do not apply for CTG?CAG repeat expansions and that CAG and CUG expansion transcripts can express homopolymeric expansion proteins in all three frames without an AUG start codon. This Repeat-Associated Non-ATG (RAN) translation is hairpin dependent, occurs without frameshifting or RNA editing and is observed in cell culture and DMpatient tissues. We propose to test the overall hypothesis that RAN translation contributes to DM disease pathogenesis.
Our specific aims are to test the hypotheses: 1) that novel polymeric expansion proteins expressed by RAN translation accumulate in DM1 and DM2 brain and contribute to CNS pathology;2) that RAN proteins are toxic independent of RNA gain of function effects;3) that RAN translation can be blocked in vivo.

Public Health Relevance

We have discovered a new translational mechanism in which disease-causing repeats in DNA direct the expression of an unexpected category of proteins without the normal regulatory signals. The goals of this project are to understand if these mutant proteins are toxic to cells and if they contribute to myotonic dystrophy types 1 and 2. These studies have potential relevance to >30 microsatellite expansion diseases.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Florida
United States
Zip Code
Pletnikova, Olga; Sloane, Kelly L; Renton, Alan E et al. (2014) Hippocampal sclerosis dementia with the C9ORF72 hexanucleotide repeat expansion. Neurobiol Aging 35:2419.e17-21
Mohan, Apoorva; Goodwin, Marianne; Swanson, Maurice S (2014) RNA-protein interactions in unstable microsatellite diseases. Brain Res 1584:3-14
Batra, Ranjan; Charizanis, Konstantinos; Manchanda, Mini et al. (2014) Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. Mol Cell 56:311-22
Cleary, John Douglas; Ranum, Laura P W (2014) Repeat associated non-ATG (RAN) translation: new starts in microsatellite expansion disorders. Curr Opin Genet Dev 26:6-15
Wozniak, Jeffrey R; Mueller, Bryon A; Lim, Kelvin O et al. (2014) Tractography reveals diffuse white matter abnormalities in Myotonic Dystrophy Type 1. J Neurol Sci 341:73-8
Goodwin, Marianne; Swanson, Maurice S (2014) RNA-binding protein misregulation in microsatellite expansion disorders. Adv Exp Med Biol 825:353-88
Hernandez-Hernandez, Oscar; Guiraud-Dogan, Celine; Sicot, Geraldine et al. (2013) Myotonic dystrophy CTG expansion affects synaptic vesicle proteins, neurotransmission and mouse behaviour. Brain 136:957-70
Cramer, Samuel W; Gao, Wangcai; Chen, Gang et al. (2013) Reevaluation of the beam and radial hypotheses of parallel fiber action in the cerebellar cortex. J Neurosci 33:11412-24
Zhang, Chaolin; Lee, Kuang-Yung; Swanson, Maurice S et al. (2013) Prediction of clustered RNA-binding protein motif sites in the mammalian genome. Nucleic Acids Res 41:6793-807
Cleary, John D; Ranum, Laura P W (2013) Repeat-associated non-ATG (RAN) translation in neurological disease. Hum Mol Genet 22:R45-51

Showing the most recent 10 out of 21 publications