PROJECT 1 The Genetic and Epigenetic Basis for FSIHD We have demonstrated that FSHD is caused by a contraction-cfepencfenf (FSHD1) or contractionindependent (FSHD2) change in chromatin structure of D4Z4 only when this contraction occurs on a specific genetic background (4qA161). This leads to the hypothesis that a change in D4Z4 chromatin structure on the 4qA161 haplotype is essential for FSHD pathology. Therefore, the long-term goal is to identify the specific DNA sequences and the epigenetic modifications that together confer pathogenicity to 4qA161.
Aim 1 will identify and functionally characterize the disease haplotype-specific sequence variants of the distal repeat unit and flanking pLAM sequence. Recent studies identified this part of the FSHD locus as the minimal essential region;
Aim 2 will identify and functionally characterize the chromatin structure of this minimal essential region test the hypothesis that the D4Z4 repeats regulate DUX4 expression and have a biological role in early embryonic development;
and Aim 3 will determine the genetic and epigenetic characteristics of D4Z4 in human ES cells to establish the developmental role of D4Z4 in relation to the clinical features of FSHD.

Public Health Relevance

The significance of these studies is that identifying the genetic and epigenetic conditions required for FSHD will provide fundamental insight into the pathophysiology of FSHD as well as providing new avenues for interventional therapies.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Fred Hutchinson Cancer Research Center
United States
Zip Code
Scully, Michele A; Eichinger, Katy J; Donlin-Smith, Colleen M et al. (2014) Restrictive lung involvement in facioscapulohumeral muscular dystrophy. Muscle Nerve 50:739-43
Zeng, Weihua; Chen, Yen-Yun; Newkirk, Daniel A et al. (2014) Genetic and epigenetic characteristics of FSHD-associated 4q and 10q D4Z4 that are distinct from non-4q/10q D4Z4 homologs. Hum Mutat 35:998-1010
Statland, Jeffrey; Tawil, Rabi (2014) Facioscapulohumeral muscular dystrophy. Neurol Clin 32:721-8, ix
Block, Gregory J; Narayanan, Divya; Amell, Amanda M et al. (2013) Wnt/*-catenin signaling suppresses DUX4 expression and prevents apoptosis of FSHD muscle cells. Hum Mol Genet 22:4661-72
Krom, Yvonne D; Thijssen, Peter E; Young, Janet M et al. (2013) Intrinsic epigenetic regulation of the D4Z4 macrosatellite repeat in a transgenic mouse model for FSHD. PLoS Genet 9:e1003415
Sacconi, Sabrina; Lemmers, Richard J L F; Balog, Judit et al. (2013) The FSHD2 gene SMCHD1 is a modifier of disease severity in families affected by FSHD1. Am J Hum Genet 93:744-51
Block, Gregory J; Petek, Lisa M; Narayanan, Divya et al. (2012) Asymmetric bidirectional transcription from the FSHD-causing D4Z4 array modulates DUX4 production. PLoS One 7:e35532
Balog, Judit; Miller, Dan; Sanchez-Curtailles, Elena et al. (2012) Epigenetic regulation of the X-chromosomal macrosatellite repeat encoding for the cancer/testis gene CT47. Eur J Hum Genet 20:185-91
Geng, Linda N; Yao, Zizhen; Snider, Lauren et al. (2012) DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev Cell 22:38-51
Sacconi, Sabrina; Camano, Pilar; de Greef, Jessica C et al. (2012) Patients with a phenotype consistent with facioscapulohumeral muscular dystrophy display genetic and epigenetic heterogeneity. J Med Genet 49:41-6

Showing the most recent 10 out of 16 publications