Alzheimer's disease (AD) is the most common cause of dementia. There is compelling data that the amyloid- beta (Abeta) peptide plays a key early role in initiating disease pathogenesis. The progressive buildup of toxic forms of Abeta in the brain appears to ultimately lead to downstream events culminating in dementia. Since the concentration of soluble Abeta peptide is directly related to the probability that it will aggregate, determining what normally regulates Abeta levels in the brain will likely provide critical insights ino factors that initiate the AD pathological cascade. The investigators on this PPG proposal have found that synaptic activity is dynamically coupled with the release of the Abeta peptide in the extracellular space of the brain. Our labs have utilized mouse models of AD to discover some of the cellular mechanisms that link synaptic transmission and dynamic changes in Abeta levels in awake, behaving mice with confirmation in human studies. Abeta is dynamically regulated by the sleep-wake cycle and this regulation appears important in determining Abeta deposition later in life. The regulation of Abeta by the sleep-wake cycle may be tied to synaptic activity as brain interstitial fluid (ISF) levels of Abeta are directly coupled with synaptic activity both pre- and post-synapticall. A molecule likely involved in this coupling is LRP1, since APP endocytosis is required for a large component of Abeta generation and LRP1 influences APP endocytosis and Abeta generation. Our hypothesis is that synaptic activity influences both Abeta production and clearance in the brain and that over time this activity influences whether, where, and when Abeta aggregates into toxic species in the brain. In addition, we hypothesize that synaptic activity-mediated Abeta generation and release 1) is influenced by the sleep/wake cycle and molecules that regulate that cycle;2) occurs in part via post-synaptic stimulation of NMDA receptors via ERK signaling;and 3) is influenced by the LDL-receptor related protein-1 (LRP1) via its interactions with APP. We will combine unique techniques including in vivo protein microdialysis, 13C-labeled amino acid pulse chase labeling combined with mass spectrometry, and focal viral-mediated gene delivery with approaches that assess systems level network function, synaptic and molecular signaling, and cell biology.

Public Health Relevance

Alzheimer's disease is the most common cause of dementia and a major public health problem. The number of cases will likely double in the next 20 years without an effective treatment. Understanding the effects of brain networks, the sleep-wake cycle, and the synaptic, cellular and molecular mechanisms underlying Abeta regulation will provide novel insights into AD pathogenesis and potentially new treatment ideas.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Corriveau, Roderick A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Schools of Medicine
Saint Louis
United States
Zip Code
Liu, Chia-Chen; Zhao, Na; Yamaguchi, Yu et al. (2016) Neuronal heparan sulfates promote amyloid pathology by modulating brain amyloid-β clearance and aggregation in Alzheimer's disease. Sci Transl Med 8:332ra44
Fisher, Jonathan R; Wallace, Clare E; Tripoli, Danielle L et al. (2016) Redundant Gs-coupled serotonin receptors regulate amyloid-β metabolism in vivo. Mol Neurodegener 11:45
Yamazaki, Yu; Baker, Darren J; Tachibana, Masaya et al. (2016) Vascular Cell Senescence Contributes to Blood-Brain Barrier Breakdown. Stroke 47:1068-77
Tachibana, Masaya; Shinohara, Mitsuru; Yamazaki, Yu et al. (2016) Rescuing effects of RXR agonist bexarotene on aging-related synapse loss depend on neuronal LRP1. Exp Neurol 277:1-9
Shinohara, Mitsuru; Kanekiyo, Takahisa; Yang, Longyu et al. (2016) APOE2 eases cognitive decline during Aging: Clinical and preclinical evaluations. Ann Neurol :
Sakae, Nobutaka; Liu, Chia-Chen; Shinohara, Mitsuru et al. (2016) ABCA7 Deficiency Accelerates Amyloid-β Generation and Alzheimer's Neuronal Pathology. J Neurosci 36:3848-59
Yuede, Carla M; Lee, Hyo; Restivo, Jessica L et al. (2016) Rapid in vivo measurement of β-amyloid reveals biphasic clearance kinetics in an Alzheimer's mouse model. J Exp Med 213:677-85
Ju, Yo-El S; Finn, Mary Beth; Sutphen, Courtney L et al. (2016) Obstructive sleep apnea decreases central nervous system-derived proteins in the cerebrospinal fluid. Ann Neurol 80:154-9
Shinohara, Mitsuru; Murray, Melissa E; Frank, Ryan D et al. (2016) Impact of sex and APOE4 on cerebral amyloid angiopathy in Alzheimer's disease. Acta Neuropathol 132:225-34
Fu, Yuan; Zhao, Jing; Atagi, Yuka et al. (2016) Apolipoprotein E lipoprotein particles inhibit amyloid-β uptake through cell surface heparan sulphate proteoglycan. Mol Neurodegener 11:37

Showing the most recent 10 out of 59 publications