instnjctions): The Synaptic Ap Microdialysis Core will serve projects within this PPG to assess dynamic changes in extracellular, or interstitial fluid (ISF), Ap levels in living mice. Microdialysis enables us to measure Ap levels in the context of a living brain with intact neural networks, a functioning blood-brain barrier, and a normal extracellular milieau. This means that studies are performed in a physiologic setting. Having a core facility organize and conduct these studies, particularly for an intricate technique such as microdialysis, ensures experiments and data across all projects can be combined and compared.

Public Health Relevance

Alzheimer's disease is characterized and likely caused by accumulation of the Ap peptide within the bran extracellular space. Understanding how extracellular Ap changes over time will be critical for determining what factors contribute to disease risk as well as for developing therapeutic interventions. Microdialysis enables us to measure how genes, proteins, or behaviors rapidly change the levels of extracellular Ap.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Saint Louis
United States
Zip Code
Liao, Fan; Zhang, Tony J; Mahan, Thomas E et al. (2015) Effects of growth hormone-releasing hormone on sleep and brain interstitial fluid amyloid-? in an APP transgenic mouse model. Brain Behav Immun 47:163-71
Lim, Miranda M; Gerstner, Jason R; Holtzman, David M (2014) The sleep-wake cycle and Alzheimer's disease: what do we know? Neurodegener Dis Manag 4:351-62
Shinohara, Mitsuru; Fujioka, Shinsuke; Murray, Melissa E et al. (2014) Regional distribution of synaptic markers and APP correlate with distinct clinicopathological features in sporadic and familial Alzheimer's disease. Brain 137:1533-49
Medway, Christopher W; Abdul-Hay, Samer; Mims, Tynickwa et al. (2014) ApoE variant p.V236E is associated with markedly reduced risk of Alzheimer's disease. Mol Neurodegener 9:11
Tai, Leon M; Mehra, Shipra; Shete, Varsha et al. (2014) Soluble apoE/A? complex: mechanism and therapeutic target for APOE4-induced AD risk. Mol Neurodegener 9:2
Liu, Chia-Chen; Tsai, Chih-Wei; Deak, Ferenc et al. (2014) Deficiency in LRP6-mediated Wnt signaling contributes to synaptic abnormalities and amyloid pathology in Alzheimer's disease. Neuron 84:63-77
Zhao, Jing; Fu, Yuan; Liu, Chia-Chen et al. (2014) Retinoic acid isomers facilitate apolipoprotein E production and lipidation in astrocytes through the retinoid X receptor/retinoic acid receptor pathway. J Biol Chem 289:11282-92
Martínez-Morillo, Eduardo; Hansson, Oskar; Atagi, Yuka et al. (2014) Total apolipoprotein E levels and specific isoform composition in cerebrospinal fluid and plasma from Alzheimer's disease patients and controls. Acta Neuropathol 127:633-43
Kanekiyo, Takahisa; Xu, Huaxi; Bu, Guojun (2014) ApoE and A? in Alzheimer's disease: accidental encounters or partners? Neuron 81:740-54
Ju, Yo-El S; Lucey, Brendan P; Holtzman, David M (2014) Sleep and Alzheimer disease pathology--a bidirectional relationship. Nat Rev Neurol 10:115-9

Showing the most recent 10 out of 15 publications