The Imaging Core supports the following Specific Aims ofthe three scientific projects ofthe Center for Brain Hemorrhage Research: 1) provide neuroimaging for edema (T2-weighted, T2W1), blood (T2WI and suscepribility weighted imaging, SWI), diffusion tensor imaging for white matter abnormalities, cerebral perfusion using both dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) approaches including cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT) and time to peak (TTP) indices;2) undertake analysis for the collected imaging data, including anatomical mapping of edema and blood, blood brain barrier (BBB) disruption, white matter changes, cerebral perfusion abnormalities;3) provide a centralized location for Project Pi's and staff to access raw and analyzed datasets;4) develop and implement computational routines as we have for other disease states (i.e. stroke, TBI) to automate and speed analysis throughput, and 5) provide statistical and computational support for imaging data comparisons to behavior, cell biology and vascular outcomes. Our comprehensive approach will provide novel data about common interrelationships between three brain models of hemorrhagic injury, Subarachnoid Hemorrhage (SAH), Intracerebral Hemorrhage (ICH), and Traumatic Brain Injury (TBI). Clinical neuroimaging is increasingly taking a significant role in assessment of SAH, ICH, and TBI. A unifying feature of these neurological disease states is the deposition of extravascular blood which is extremely toxic to the brain and leads to rupture ofthe blood brain barrier (BBB). This cascade of events results in development of edema, often with catastrophic outcomes. Numerous studies have demonstrated that rapid imaging ofthe extent and anatomical location of blood is critical for decision-making relative to potential therapeutic interventions. Thus, the Imaging Core has elected for these Projects to focus on early and late indices of brain injury and function: 1) edema, 2) extravascular blood, 3) cerebral perfusion, and 4) white matter function. The Imaging Core will 1) undertake non-invasive but functional measures of brain physiology using MR imaging, 2) use standard and novel computational analysis to maximize data extraction, and 3) use numerical analysis methods to identify common data from all cores (Behavioral, Imaging, Vascular) that emerge for SAH, ICH, and TBI.

Public Health Relevance

The Imaging Core provides additional strengths that could not be obtained using traditional funding mechanisms and overall strengthens and unifies the overarching Aims ofthe Center for Brain Hemorrhage Research.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Loma Linda University
Loma Linda
United States
Zip Code
Guo, Zongduo; Hu, Qin; Xu, Liang et al. (2016) Lipoxin A4 Reduces Inflammation Through Formyl Peptide Receptor 2/p38 MAPK Signaling Pathway in Subarachnoid Hemorrhage Rats. Stroke 47:490-7
Jullienne, Amandine; Obenaus, Andre; Ichkova, Aleksandra et al. (2016) Chronic cerebrovascular dysfunction after traumatic brain injury. J Neurosci Res 94:609-22
Yang, Peng; Manaenko, Anatol; Xu, Feng et al. (2016) Role of PDGF-D and PDGFR-β in neuroinflammation in experimental ICH mice model. Exp Neurol 283:157-64
Flores, Jerry J; Klebe, Damon; Rolland, William B et al. (2016) PPARγ-induced upregulation of CD36 enhances hematoma resolution and attenuates long-term neurological deficits after germinal matrix hemorrhage in neonatal rats. Neurobiol Dis 87:124-33
Wu, Jiang; Zhang, Yang; Yang, Peng et al. (2016) Recombinant Osteopontin Stabilizes Smooth Muscle Cell Phenotype via Integrin Receptor/Integrin-Linked Kinase/Rac-1 Pathway After Subarachnoid Hemorrhage in Rats. Stroke 47:1319-27
Yang, Peng; Wu, Jiang; Miao, Liyan et al. (2016) Platelet-Derived Growth Factor Receptor-β Regulates Vascular Smooth Muscle Cell Phenotypic Transformation and Neuroinflammation After Intracerebral Hemorrhage in Mice. Crit Care Med 44:e390-402
Yin, Cheng; Huang, Guang-Fu; Sun, Xiao-Chuan et al. (2016) Tozasertib attenuates neuronal apoptosis via DLK/JIP3/MA2K7/JNK pathway in early brain injury after SAH in rats. Neuropharmacology 108:316-23
Wang, Yuechun; Reis, Cesar; Applegate 2nd, Richard et al. (2015) Ischemic conditioning-induced endogenous brain protection: Applications pre-, per- or post-stroke. Exp Neurol 272:26-40
Chen, Yujie; Zhang, Yang; Tang, Junjia et al. (2015) Norrin protected blood-brain barrier via frizzled-4/β-catenin pathway after subarachnoid hemorrhage in rats. Stroke 46:529-36
Huang, Lei; Sherchan, Prativa; Wang, Yuechun et al. (2015) Phosphoinositide 3-Kinase Gamma Contributes to Neuroinflammation in a Rat Model of Surgical Brain Injury. J Neurosci 35:10390-401

Showing the most recent 10 out of 39 publications