The Imaging Core supports the following Specific Aims ofthe three scientific projects ofthe Center for Brain Hemorrhage Research: 1) provide neuroimaging for edema (T2-weighted, T2W1), blood (T2WI and suscepribility weighted imaging, SWI), diffusion tensor imaging for white matter abnormalities, cerebral perfusion using both dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) approaches including cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT) and time to peak (TTP) indices;2) undertake analysis for the collected imaging data, including anatomical mapping of edema and blood, blood brain barrier (BBB) disruption, white matter changes, cerebral perfusion abnormalities;3) provide a centralized location for Project Pi's and staff to access raw and analyzed datasets;4) develop and implement computational routines as we have for other disease states (i.e. stroke, TBI) to automate and speed analysis throughput, and 5) provide statistical and computational support for imaging data comparisons to behavior, cell biology and vascular outcomes. Our comprehensive approach will provide novel data about common interrelationships between three brain models of hemorrhagic injury, Subarachnoid Hemorrhage (SAH), Intracerebral Hemorrhage (ICH), and Traumatic Brain Injury (TBI). Clinical neuroimaging is increasingly taking a significant role in assessment of SAH, ICH, and TBI. A unifying feature of these neurological disease states is the deposition of extravascular blood which is extremely toxic to the brain and leads to rupture ofthe blood brain barrier (BBB). This cascade of events results in development of edema, often with catastrophic outcomes. Numerous studies have demonstrated that rapid imaging ofthe extent and anatomical location of blood is critical for decision-making relative to potential therapeutic interventions. Thus, the Imaging Core has elected for these Projects to focus on early and late indices of brain injury and function: 1) edema, 2) extravascular blood, 3) cerebral perfusion, and 4) white matter function. The Imaging Core will 1) undertake non-invasive but functional measures of brain physiology using MR imaging, 2) use standard and novel computational analysis to maximize data extraction, and 3) use numerical analysis methods to identify common data from all cores (Behavioral, Imaging, Vascular) that emerge for SAH, ICH, and TBI.

Public Health Relevance

The Imaging Core provides additional strengths that could not be obtained using traditional funding mechanisms and overall strengthens and unifies the overarching Aims ofthe Center for Brain Hemorrhage Research.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Loma Linda University
Loma Linda
United States
Zip Code
Zhan, Yan; Krafft, Paul R; Lekic, Tim et al. (2015) Imatinib preserves blood-brain barrier integrity following experimental subarachnoid hemorrhage in rats. J Neurosci Res 93:94-103
Zheng, Yun; Hu, Qin; Manaenko, Anatol et al. (2015) 17?-Estradiol attenuates hematoma expansion through estrogen receptor ?/silent information regulator 1/nuclear factor-kappa b pathway in hyperglycemic intracerebral hemorrhage mice. Stroke 46:485-91
Liu, Fei; Hu, Qin; Li, Bo et al. (2014) Recombinant milk fat globule-EGF factor-8 reduces oxidative stress via integrin ?3/nuclear factor erythroid 2-related factor 2/heme oxygenase pathway in subarachnoid hemorrhage rats. Stroke 45:3691-7
Chen, Sheng; Feng, Hua; Sherchan, Prativa et al. (2014) Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol 115:64-91
Fujii, Mutsumi; Sherchan, Prativa; Soejima, Yoshiteru et al. (2014) Cannabinoid receptor type 2 agonist attenuates apoptosis by activation of phosphorylated CREB-Bcl-2 pathway after subarachnoid hemorrhage in rats. Exp Neurol 261:396-403
Krafft, Paul R; McBride, Devin W; Lekic, Tim et al. (2014) Correlation between subacute sensorimotor deficits and brain edema in two mouse models of intracerebral hemorrhage. Behav Brain Res 264:151-60
Ma, Qingyi; Chen, Sheng; Hu, Qin et al. (2014) Reply: To PMID 24273204. Ann Neurol 75:972-3
Li, Qian; Khatibi, Nikan; Zhang, John H (2014) Vascular neural network: the importance of vein drainage in stroke. Transl Stroke Res 5:163-6
Altay, Orhan; Suzuki, Hidenori; Hasegawa, Yu et al. (2014) Isoflurane on brain inflammation. Neurobiol Dis 62:365-71
Fujii, Mutsumi; Sherchan, Prativa; Krafft, Paul R et al. (2014) Cannabinoid type 2 receptor stimulation attenuates brain edema by reducing cerebral leukocyte infiltration following subarachnoid hemorrhage in rats. J Neurol Sci 342:101-6

Showing the most recent 10 out of 11 publications