This Program Project Grant (PPG) will address how an expanded neurovascular unit responds to injury and putative therapeutic treatment in three major brain hemorrhagic disorders seen in neurosurgery service. The expanded neurovascular unit includes not only endothelial cells, pericytes, and astrocytes but also the feeding and upstream cerebral arteries of the neurovascular unit and arterial smooth muscle cells. The responses of the expanded neurovascular unit to hemorrhagic brain injury may not only demonstrate universal but also distinct pathophysiological features. In our PPG we propose a horizontal comparative study in rodent models o f t h e three major brain hemorrhage disorders, subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), and traumatic brain injury (TBI). Similarly we will compare three different treatment strategies such as osteopontin (OPN), anti-PDGF (Gleevec), and AP-Cav (caveolin) in all three distinct hemorrhagic brain injury models. Based upon existing literature combined with our own preliminary observations, our hypothesis is that there are universal but distinct features of injury encompassing the expanded neurovascular unit following brain hemorrhage in SAH/ICH/TBI models. We further hypothesize that three distinct neurovascular protection strategies targeting the matrix protein OPN, PDGF-receptors, and endothelial caveolin will prevent arterial smooth muscle phenotype changes, provide neurovascular protection to strengthen blood-brain barrier (BBB) integrity, improve vascular function and reduce brain edema via different mechanisms.

Public Health Relevance

This PPG will integrate expertise from cerebral hemorrhage, traumatic brain injury and vascular biology to study common features of an expanded neurovascular injury after subarachnoid hemorrhage, intracerebral hemorrhage and traumatic brain injury. Injuries will be mimicked in three rodent models while employing neuroimaging, neurobehavioral testing and vascular biology to compare common and distinct features. Using three treatment strategies in all models, our results have the potential to impact daily neurosurgery service.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Program Projects (P01)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Koenig, James I
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Loma Linda University
Schools of Medicine
Loma Linda
United States
Zip Code
Wang, Yuechun; Sherchan, Prativa; Huang, Lei et al. (2017) Naja sputatrix Venom Preconditioning Attenuates Neuroinflammation in a Rat Model of Surgical Brain Injury via PLA2/5-LOX/LTB4 Cascade Activation. Sci Rep 7:5466
Akyol, Gokce Yilmaz; Manaenko, Anatol; Akyol, Onat et al. (2017) IVIG activates Fc?RIIB-SHIP1-PIP3 Pathway to stabilize mast cells and suppress inflammation after ICH in mice. Sci Rep 7:15583
Kim, Cherine H; McBride, Devin W; Sherchan, Prativa et al. (2017) Crotalus helleri venom preconditioning reduces postoperative cerebral edema and improves neurological outcomes after surgical brain injury. Neurobiol Dis 107:66-72
Ma, Li; Manaenko, Anatol; Ou, Yi-Bo et al. (2017) Bosutinib Attenuates Inflammation via Inhibiting Salt-Inducible Kinases in Experimental Model of Intracerebral Hemorrhage on Mice. Stroke 48:3108-3116
Rolland, William B; Krafft, Paul R; Lekic, Tim et al. (2017) Fingolimod confers neuroprotection through activation of Rac1 after experimental germinal matrix hemorrhage in rat pups. J Neurochem 140:776-786
Yu, Lingyan; Lu, Zhengyang; Burchell, Sherrefa et al. (2017) Adropin preserves the blood-brain barrier through a Notch1/Hes1 pathway after intracerebral hemorrhage in mice. J Neurochem 143:750-760
McBride, Devin W; Zhang, John H (2017) Precision Stroke Animal Models: the Permanent MCAO Model Should Be the Primary Model, Not Transient MCAO. Transl Stroke Res :
Hu, Qin; Manaenko, Anatol; Bian, Hetao et al. (2017) Hyperbaric Oxygen Reduces Infarction Volume and Hemorrhagic Transformation Through ATP/NAD+/Sirt1 Pathway in Hyperglycemic Middle Cerebral Artery Occlusion Rats. Stroke 48:1655-1664
Zhang, John H; Obenaus, Andre; Liebeskind, David S et al. (2017) Recanalization, reperfusion, and recirculation in stroke. J Cereb Blood Flow Metab 37:3818-3823
Obenaus, Andre; Ng, Michelle; Orantes, Amanda M et al. (2017) Traumatic brain injury results in acute rarefication of the vascular network. Sci Rep 7:239

Showing the most recent 10 out of 52 publications