The University of Kansas Medical Center (KUMC) presents an application for continued support for the Kansas IDeA Network for Biomedical Research Excellence (K-INBRE). The K-INBRE links KUMC (Lead Institution) with the two major doctoral-degree-granting institutions in Kansas (University of Kansas-Lawrence, KU-L;Kansas State Univ., KSU) as Graduate Partner Institutions (GPIs), and with seven Undergraduate Partner Institutions (UPls). UPls include six Kansas undergraduate campuses (Emporia State Univ., Ft. Hays State Univ., Haskell Indian Nations Univ., Pittsburg State Univ., Washburn Univ., Wichita State Univ.) and Langston Univ. (Langston, OK). Haskell Indian Nations Univ. and Langston Univ. increase diversity in the network as the first is devoted to education and training of native Americans and the second enrolls primarily black undergraduates. The long-range objective of the Kansas program is to strengthen the state's research capacity in Cell and Developmental Biology by building on the successes of the current K-INBRE. The structure and operational principles of the K-INBRE, which focus on training for biomedical research, networking and intercampus communication and the presence of a sophisticated bioinformatics program, were established during the previous years. These goals remain similar as the KINBRE has had a significant impact on biomedical research in the State of Kansas, but novel programs are tailored to fit new emerging areas associated with translational research. Programs conducted by the KINBRE have had measurable success in reaching their stated goals.
The Specific Aims proposed for the next phase of the K-INBRE are to (1) maintain and improve the current multi-disciplinary research network in Cell and Developmental Biology in the State of Kansas, strengthening both communication channels and research infrastructure, (2) enhance science and technology knowledge and integration in Kansas by offering sophisticated bioinformatics technology and education, (3) stimulate basic and translational research in the State of Kansas via mentored, interdisciplinary research opportunities. Within these Aims, new features that improve the K-INBRE include broadening funding for research careers together with improvements in oversight and the mentoring process, promoting an integrated systems biology approach within our bioinformatics network, and incorporating training for translational research into the K-INBRE goals so as to smooth the progress of scientific discoveries into the clinical arena.

Public Health Relevance

Research in cell and developmental biology is essential to advancing our understanding of cellular processes of health and disease. Such research relies on generation of a strong, well educated workforce, ready availability of the tools of discovery and emphasis on applying the results of discovery research to problems of human health. In building a distinguished center of research in cell and developmental biology in Kansas, the K-INBRE vigorously pursues all three of these key strategies.

National Institute of Health (NIH)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Arora, Krishan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kansas
Anatomy/Cell Biology
Schools of Medicine
Kansas City
United States
Zip Code
Vangavaragu, Jhansi Rani; Valasani, Koteswara Rao; Fang, Du et al. (2014) Determination of small molecule ABAD inhibitors crossing blood-brain barrier and pharmacokinetics. J Alzheimers Dis 42:333-44
Slone, Emily Archer; Fleming, Sherry D (2014) Membrane lipid interactions in intestinal ischemia/reperfusion-induced Injury. Clin Immunol 153:228-40
Singh, Chingakham R; Lovell, Scott; Mehzabeen, Nurjahan et al. (2014) 1.15?Å resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain. Acta Crystallogr F Struct Biol Commun 70:418-23
Hall, Sonia; Bone, Courtney; Oshima, Kenzi et al. (2014) Macroglobulin complement-related encodes a protein required for septate junction organization and paracellular barrier function in Drosophila. Development 141:889-98
Swamynathan, Priyanka; Venugopal, Parvathy; Kannan, Suresh et al. (2014) Are serum-free and xeno-free culture conditions ideal for large scale clinical grade expansion of Wharton's jelly derived mesenchymal stem cells? A comparative study. Stem Cell Res Ther 5:88
Reeves, Wendy; Thayer, Rachel; Veeman, Michael (2014) Anterior-posterior regionalized gene expression in the Ciona notochord. Dev Dyn 243:612-20
Xie, Linglin; Fu, Qiang; Ortega, Teresa M et al. (2014) Overexpression of IL-10 in C2D macrophages promotes a macrophage phenotypic switch in adipose tissue environments. PLoS One 9:e86541
Prior, Allan M; Gunaratna, Medha J; Kikuchi, Daisuke et al. (2014) Syntheses of 3-[(Alkylamino)methylene]-6-methylpyridine-2,4(1H,3H)-diones, 3-Substituted 7-Methyl-2H-pyrano[3,2-c]pyridine-2,5(6H)-dione Fluorescence Probes, and Tetrahydro-1H,9H-2,10-dioxa-9-azaanthracen-1-ones. Synthesis (Stuttg) 46:2179-2190
Li, Yongchao; Weiss, Mark; Yao, Li (2014) Directed migration of embryonic stem cell-derived neural cells in an applied electric field. Stem Cell Rev 10:653-62
Fridley, Brooke L; Armasu, Sebastian M; Cicek, Mine S et al. (2014) Methylation of leukocyte DNA and ovarian cancer: relationships with disease status and outcome. BMC Med Genomics 7:21

Showing the most recent 10 out of 58 publications