This proposal will continue the goals of the Arkansas IDeA Network for Biomedical Research Excellence (INBRE) to expand biomedical research capacity in Arkansas. Building upon infrastructure developed during the first INBRE phase, three research-intensive, lead institutions in the state?the University of Arkansas for Medical Sciences;the University of Arkansas, Fayetteville, and the University of Arkansas at Little Rock?will provide scientific leadership. Thirteen investigators, faculty from six undergraduate institutions, in collaboration with their mentors at the lead institutions, will conduct research under the overall theme of Cellular Signaling, Growth, and Differentiation. The Administrative Core will coordinate all Arkansas INBRE activities and facilitate the research accomplishments of these 13 investigators. The interactions among undergraduate researchers across the state will be highlighted by an annual conference attended by all INBRE faculty and students. The Arkansas INBRE will continue its commitment to expand opportunities for underrepresented groups. The INBRE will partner with the Center for Diversity Affairs and the School in advancing the goals of the newly NIH-funded Initiative for Maximizing Student Diversity (IMSD) Program to increase the numbers of minority students completing graduate degrees in the biomedical sciences at UAMS. Communication among INBRE participants will be facilitated by Access Grid Studios linked through Internet2. The Bioinformatics Core will be a statewide research and educational resource to give undergraduate faculty and students access to the computational tools needed for multidisciplinary biomedical research. This Core will also host a student exchange with Jackson State University (a Mississippi RCMI) to collaborate In a long-term study of cardiovascular disease in African Americans. The Arkansas INBRE will also support a Science Research Core consisting of proteomics, digital microscopy and DNA damage/toxicology facilities. These will provide investigators access to sophisticated instrumentation and technical expertise difficult to establish at a small institution. The Outreach Core will offer mentored summer research opportunities to non-INBRE undergraduate faculty and students throughout the state. Through further enhancement of research infrastructure, particularly at undergraduate Institutions, the Arkansas INBRE will improve the ability of academic researchers to compete for federal funding, increase the number of undergraduate students who choose careers in biomedical research, and stimulate the growth of biotechnical industries in Arkansas.

Public Health Relevance

The INBRE program allows Arkansas investigators to be more competitive for federal funding of research that leads to better medical diagnosis and development of therapies for human diseases. INBRE support of undergraduate student training in biomedical research contributes to the development of the next generations of U.S. biomedical scientists.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
8P20GM103429-11
Application #
8261896
Study Section
Special Emphasis Panel (ZRR1-RI-7 (01))
Program Officer
Douthard, Regine
Project Start
2001-09-30
Project End
2015-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
11
Fiscal Year
2012
Total Cost
$2,879,139
Indirect Cost
$213,459
Name
University of Arkansas for Medical Sciences
Department
Physiology
Type
Schools of Medicine
DUNS #
122452563
City
Little Rock
State
AR
Country
United States
Zip Code
72205
Zeng, Jie; Xie, Shuanshuan; Liu, Yang et al. (2018) CDK5 Functions as a Tumor Promoter in Human Lung Cancer. J Cancer 9:3950-3961
Kore, Rajshekhar A; Edmondson, Jacob L; Jenkins, Samir V et al. (2018) Hypoxia-derived exosomes induce putative altered pathways in biosynthesis and ion regulatory channels in glioblastoma cells. Biochem Biophys Rep 14:104-113
Johann Jr, Donald J; Steliga, Mathew; Shin, Ik J et al. (2018) Liquid biopsy and its role in an advanced clinical trial for lung cancer. Exp Biol Med (Maywood) 243:262-271
Byrum, Stephanie D; Loughran, Allister J; Beenken, Karen E et al. (2018) Label-Free Proteomic Approach to Characterize Protease-Dependent and -Independent Effects of sarA Inactivation on the Staphylococcus aureus Exoproteome. J Proteome Res 17:3384-3395
Mao, Xiao W; Byrum, Stephanie; Nishiyama, Nina C et al. (2018) Impact of Spaceflight and Artificial Gravity on the Mouse Retina: Biochemical and Proteomic Analysis. Int J Mol Sci 19:
Caviness, Perry; Bauer, Ryan; Tanaka, Keisuke et al. (2018) Ca2+ -induced orientation of tandem collagen binding domains from clostridial collagenase ColG permits two opposing functions of collagen fibril formation and retardation. FEBS J 285:3254-3269
Cogill, Steven B; Srivastava, Anand K; Yang, Mary Qu et al. (2018) Co-expression of long non-coding RNAs and autism risk genes in the developing human brain. BMC Syst Biol 12:91
Zhang, Xin; Zhang, Suping; Liu, Xingui et al. (2018) Oxidation resistance 1 is a novel senolytic target. Aging Cell :e12780
Causey, Jason L; Ashby, Cody; Walker, Karl et al. (2018) DNAp: A Pipeline for DNA-seq Data Analysis. Sci Rep 8:6793
Causey, Jason L; Zhang, Junyu; Ma, Shiqian et al. (2018) Highly accurate model for prediction of lung nodule malignancy with CT scans. Sci Rep 8:9286

Showing the most recent 10 out of 175 publications