Program Director/Principal Investigator (Last, First, Middle): Vyavahare Narendra R. Project Summary Traumatic brain injury (TBI) initiates a complex physiological response involving both progressive tissue damage and activation of reparative processes including neurogenesis, angiogenesis, and plasticity through axonal sprouting and synaptic reorganization. The limited capacity for remodeling in the adult brain is attributable to age-related changes in the extrinsic neuronal microenvironment such as accumulation of myelin- associated inhibitors (MAIs), and chondroitin sulfate proteoglycans (CSPGs), as well as intrinsic changes in neuronal biochemistry such as cyclic AMP (cAMP) levels. Several groups have begun to investigate therapeutic strategies to overcome these barriers using monoclonal antibodies against MAIs, CSPG- degradative enzymes, and drugs that modulate cAMP levels. Despite encouraging results, the clinical translation of these approaches is limited by the need for invasive delivery methods, transplantation of xenogenic cells, and use of bacterially-derived enzymes. The objective of this project is to develop novel neuron-specific nanotherapeutics for combinatorial delivery of drug and small interfering RNA (siRNA) targeting both extrinsic and intrinsic barriers to neuroplasticity. These nanotherapeutics will consist of poly (lactide-co-glycolide)-graft-polyethyleneimine (PgP) copolymer micelles loaded with 1) rolipram, phosphodiesterase inhibitor in the hydrophobic core to stabilize neuronal cAMP levels, 2) siRNA bound to the cationic shell targeting RhoA, an intracellular signaling molecule activated by multiple neuronal growth inhibitors, and 3) a monoclonal antibody against the Nogo receptor (mNgR1) that binds MAIs for neuronal targeting and inhibition of MAI/receptor binding.
The Specific Aims are: 1. to synthesize and evaluate PgP- mNgR1 nanoparticles as a drug and siRNA carrier, 2. to evaluate the ability of PgP-mNgR1 nanotherapeutics loaded with rolipram and RhoA siRNA to inhibit RhoA expression, elevate cAMP, and stimulate neurite outgrowth on inhibitory substrates, and 3. to evaluate neuroplasticity and functional recovery in response to delivery of nanotherapeutics in a rat direct cortical impact model of TBI. These studies will rely upon close collaboration with the Cell, Tissue, and Molecular Analysis Core and Bioengineering and Bioimaging Core for material characterization, analysis of cell response, and animal imaging and on the expertise of the PI's mentors Drs. Mark Kindy and Michael Lynn in basic and clinical neuroscience. Through these studies, we will develop PgP as a targeted, combinatorial drug-delivery system capable of addressing the complex pathology of TBI. Due to their modular design, these NPs can be modified for use with various drugs/siRNA and targeting ligands, providing broad applicability to a diverse range of pathologies.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Clemson University
United States
Zip Code
Yu, Jin; Zhu, Hong; Perry, Stephen et al. (2017) Daily supplementation with GrandFusion® improves memory and learning in aged rats. Aging (Albany NY) 9:1041-1054
Gil, Dmitry; Shuvaev, Sergey; Frank-Kamenetskii, Anastasia et al. (2017) Novel Antibacterial Coating on Orthopedic Wires To Eliminate Pin Tract Infections. Antimicrob Agents Chemother 61:
Ghatak, Shibnath; Markwald, Roger R; Hascall, Vincent C et al. (2017) Transforming growth factor ?1 (TGF?1) regulates CD44V6 expression and activity through extracellular signal-regulated kinase (ERK)-induced EGR1 in pulmonary fibrogenic fibroblasts. J Biol Chem 292:10465-10489
Angelé-Martínez, Carlos; Nguyen, Khanh Van T; Ameer, Fathima S et al. (2017) Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology 11:278-288
Tan, Yu; Richards, Dylan; Coyle, Robert C et al. (2017) Cell number per spheroid and electrical conductivity of nanowires influence the function of silicon nanowired human cardiac spheroids. Acta Biomater 51:495-504
Richards, Dylan; Jia, Jia; Yost, Michael et al. (2017) 3D Bioprinting for Vascularized Tissue Fabrication. Ann Biomed Eng 45:132-147
Ghatak, Shibnath; Hascall, Vincent C; Markwald, Roger R et al. (2017) Transforming growth factor ?1 (TGF?1)-induced CD44V6-NOX4 signaling in pathogenesis of idiopathic pulmonary fibrosis. J Biol Chem 292:10490-10519
Richards, Dylan J; Coyle, Robert C; Tan, Yu et al. (2017) Inspiration from heart development: Biomimetic development of functional human cardiac organoids. Biomaterials 142:112-123
Gwak, So-Jung; Macks, Christian; Bae, Sooneon et al. (2017) Physicochemical stability and transfection efficiency of cationic amphiphilic copolymer/pDNA polyplexes for spinal cord injury repair. Sci Rep 7:11247
Gwak, So-Jung; Macks, Christian; Jeong, Da Un et al. (2017) RhoA knockdown by cationic amphiphilic copolymer/siRhoA polyplexes enhances axonal regeneration in rat spinal cord injury model. Biomaterials 121:155-166

Showing the most recent 10 out of 109 publications