Impaired socio-emotional (SE) functioning is a prominent feature of schizophrenia (SZ), especially the ability to perceive emotion in faces and prosody. Conceivably, such deficits result in difficulties integrating into society and thus maintaining friendships and relationships at work. Compared to other psychiatric population such as bipolar disorder (BP), SZ patients experience greater impairments in SE functioning and poorer functional outcome than BP patients. Therefore, understanding how deficits in SE neurocircuitry contribute to different levels of social and occupational functioning in SZ relative to BP and healthy controls (HC) can provide important knowledge for developing specific training programs and treatments that target different psychiatric populations. This project will apply multimodal neuroimaging - Magnetoencephalography (MEG) and Diffusion Tensor Imaging (DTI) - to assess the underlying mechanisms of altered SE functioning in SZ and BP patients. MEG'S unique combination of temporal and spatial resolution, in combination with structural MRl (sMRI), provides information on brain processes occurring millisecond by millisecond and is able to evaluate top-down and bottom-up emotional processing at different stages. DTI adds complementary information about how white matter integrity contributes to deficits at different stages of emotion processing. To better understand how SE impairment mediates social functioning in SZ, the proposed research will (1) evaluate the SE neural networks unique to and shared in SZ and BP by measuring brain activity and structures associated with SE processing via the use of MEG, sMRI, and DTI;(2) evaluate the social functioning differences between SZ and BP by assessing the ability to perceive emotion and the ability to integrate social skills in society using cognitive and psychosocial measures;and (3) evaluate associations between neural networks and associated anatomy and performance on psychosocial and social functioning measures. Together, the aims of this project will provide a novel dataset that will elucidate the common and unique aspects of SE functioning in SZ, BP, and HC.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
2P20GM103472-06
Application #
8602559
Study Section
Special Emphasis Panel (ZGM1-TWD-Y (C2))
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-04-30
Support Year
6
Fiscal Year
2013
Total Cost
$200,664
Indirect Cost
$82,973
Name
The Mind Research Network
Department
Type
DUNS #
098640696
City
Albuquerque
State
NM
Country
United States
Zip Code
87106
Bernard, Jessica A; Leopold, Daniel R; Calhoun, Vince D et al. (2015) Regional cerebellar volume and cognitive function from adolescence to late middle age. Hum Brain Mapp 36:1102-20
Yen, Tony; Khafaja, Mohamad; Lam, Nicholas et al. (2015) Post-electroconvulsive therapy recovery and reorientation time with methohexital and ketamine: a randomized, longitudinal, crossover design trial. J ECT 31:20-5
Josef Golubic, Sanja; Aine, Cheryl J; Stephen, Julia M et al. (2014) Modulatory role of the prefrontal generator within the auditory M50 network. Neuroimage 92:120-31
Coffman, Brian A; Clark, Vincent P; Parasuraman, Raja (2014) Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage 85 Pt 3:895-908
Walton, Esther; Liu, Jingyu; Hass, Johanna et al. (2014) MB-COMT promoter DNA methylation is associated with working-memory processing in schizophrenia patients and healthy controls. Epigenetics 9:1101-7
Abbott, Christopher C; Gallegos, Patrick; Rediske, Nathan et al. (2014) A review of longitudinal electroconvulsive therapy: neuroimaging investigations. J Geriatr Psychiatry Neurol 27:33-46
Arbabshirani, Mohammad R; Damaraju, Eswar; Phlypo, Ronald et al. (2014) Impact of autocorrelation on functional connectivity. Neuroimage 102 Pt 2:294-308
Chen, Jiayu; Liu, Jingyu; Calhoun, Vince D et al. (2014) Exploration of scanning effects in multi-site structural MRI studies. J Neurosci Methods 230:37-50
Hjelm, R Devon; Calhoun, Vince D; Salakhutdinov, Ruslan et al. (2014) Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks. Neuroimage 96:245-60
Ford, Judith M; Morris, Sarah E; Hoffman, Ralph E et al. (2014) Studying hallucinations within the NIMH RDoC framework. Schizophr Bull 40 Suppl 4:S295-304

Showing the most recent 10 out of 21 publications