This Phase II COBRE project is a natural extension of our Phase I COBRE on multimodal neuroimaging in schizophrenia. In the next evolution we will build on our success in Phase I to include a wider range of disease categories making the overarching theme of the Phase II COBRE the use of multimodal neuroimaging to better understand the neural mechanisms of psychosis and mood disorders. The Mind Research Network (MRN) houses an Elekta MEG System, a high density EEG lab, and a 3T Siemens Trio MRl scanner. Additional resources include a centralized neuroinformatics system, a strong IT management plan, and state-of-the-art image analysis tools. The Phase II COBRE will provide support to five outstanding junior investigators through the assistance of strong senior mentors. The five projects each focus on distinct, but related, aspects of psychosis and mood disorders. Project 1 will utilize advanced data fusion methods to evaluate the ability of multimodal brain imaging data to differentiate patient groups and to push beyond discrete diagnostic categories by identifying individuals in intermediate positions on the continuum. Project 2 is an expansion of the pilot genetic program from the Phase I to evaluate the shared and unique aspects of genetic influence on brain structural networks using advanced multivariate methods. Project 3 will focus on the lens of social cognition and evaluate functional networks in patients while perceiving facial and vocal emotions. The ability of both structural and functional networks to differentiate groups and predict outcomes will be evaluated. Project 4 will focus on auditory hallucinations using MEG and fMRI. Evaluation of the ability to predict hallucinations from the imaging data as well as the impact of transcranial direct current stimulation (tDCS) on the identified brain networks will be investigated. And finally, Project 5 will use a longitudinal desin to study brain networks related to major depression and relapse after treatment with electro-convulsive therapy (ECT). We will continue with the cores established during the Phase I project including administration, clinical assessment, and mentoring (ACAM), multimodal data acquisition (MDA), algorithm and data analysis (ADA), and biostatistics and neuro-informatics (BNI). These cores have begun to serve MRN and the greater community, as well as other institutions including extension collaborations with IDeA funded projects in New Mexico and other states. A highly successful pilot project program will be continued. We believe this Phase II COBRE is extremely well-positioned to establish New Mexico as one of the premier brain imaging sites. We include an extensive educational, mentoring, and faculty development program to carefully mentor and establish junior investigators as independently funded investigators, thus fulfilling the ultimate goals of the COBRE program.

Public Health Relevance

This Phase II COBRE project is a natural extension of our Phase I COBRE on multimodal neuroimaging in schizophrenia. We expand Phase I work (cognitive functioning) to include interpersonal functioning (i.e., social cognition), the neuronal basis of hallucinations, and most importantly treatment response across a spectrum of disorders (SZ, BP and major depression). Our projects will utilize advanced approaches to identify biomarkers and to evaluate their predictive utility.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103472-07
Application #
8708139
Study Section
Special Emphasis Panel (ZGM1-TWD-Y (C2))
Program Officer
Caldwell, Sheila
Project Start
2008-09-08
Project End
2018-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
7
Fiscal Year
2014
Total Cost
$2,418,292
Indirect Cost
$690,594
Name
The Mind Research Network
Department
Type
DUNS #
098640696
City
Albuquerque
State
NM
Country
United States
Zip Code
87106
Miller, Robyn L; Yaesoubi, Maziar; Calhoun, Vince D (2016) Cross-Frequency rs-fMRI Network Connectivity Patterns Manifest Differently for Schizophrenia Patients and Healthy Controls. IEEE Signal Process Lett 23:1076-1080
Yu, Qingbao; Wu, Lei; Bridwell, David A et al. (2016) Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study. Front Hum Neurosci 10:476
Chen, Jiayu; Calhoun, Vince D; Pearlson, Godfrey D et al. (2016) Independent component analysis of SNPs reflects polygenic risk scores for schizophrenia. Schizophr Res :
Mayer, Andrew R; Hanlon, Faith M; Dodd, Andrew B et al. (2016) Proactive response inhibition abnormalities in the sensorimotor cortex of patients with schizophrenia. J Psychiatry Neurosci 41:312-21
Fink, Brandi C; Steele, Vaughn R; Maurer, Michael J et al. (2016) Brain potentials predict substance abuse treatment completion in a prison sample. Brain Behav 6:e00501
Nomi, Jason S; Farrant, Kristafor; Damaraju, Eswar et al. (2016) Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions. Hum Brain Mapp 37:1770-87
Hanlon, Faith M; Shaff, Nicholas A; Dodd, Andrew B et al. (2016) Hemodynamic response function abnormalities in schizophrenia during a multisensory detection task. Hum Brain Mapp 37:745-55
van Erp, T G M; Hibar, D P; Rasmussen, J M et al. (2016) Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 21:547-53
Bridwell, David A; Rachakonda, Srinivas; Silva, Rogers F et al. (2016) Spatiospectral Decomposition of Multi-subject EEG: Evaluating Blind Source Separation Algorithms on Real and Realistic Simulated Data. Brain Topogr :
Xu, Jiansong; Potenza, Marc N; Calhoun, Vince D et al. (2016) Large-scale functional network overlap is a general property of brain functional organization: Reconciling inconsistent fMRI findings from general-linear-model-based analyses. Neurosci Biobehav Rev 71:83-100

Showing the most recent 10 out of 118 publications