This proposal seeks to develop an interdisciplinary Nanomedicine Center at the University of Nebraska Medical Center. We have assembled a team of scientists with specific expertise in nanomedicine, drug delivery, therapeutics and diagnostics. These will now be joined by biochemists, pharmacologists, immunologists and neuroscientists. All will work, with singular focus, to develop the means to best use devices of nanoscale size to improve outcomes for cancer, neurodegenerative and cardiovascular diseases. Such approaches will deliver drugs to focal areas of central nervous system disease or directly to tumors. Parallel studies seek nanotechnologies to improve diagnostic measures and disease monitoring. The anticipated outcome is to maximize clinical benefits and limit untoward side effects. Nanotechnology is amongst the most rapidly developing approaches available towards for drug and gene delivery. Indeed, the National Institutes of Health (NIH) have identified the need in developing the field of Nanomedicine as an integral component of its strategic plan. The challenges in realizing these goals require the formation of multidisciplinary research centers that include broad expertise in material, pharmaceutical and biological sciences driven by innovative research. This is the foundation for the Nebraska Center for Nanomedicine (NCN). The long-term goals are to build upon and integrate already strong areas of research in cancer biology, neurodegenerative disorders, molecular imaging (magnetic resonance and single photon emission computed tomography) with material and pharmaceutical sciences (nanomaterials, polymers, drug delivery, and gene delivery). The envisioned cross-disciplinary expertise could be joined between traditional biomedical research and material sciences through the NCN.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
8P20GM103480-05
Application #
8299056
Study Section
Special Emphasis Panel (ZRR1-RI-2 (01))
Program Officer
Canto, Maria Teresa
Project Start
2008-09-26
Project End
2013-09-14
Budget Start
2012-07-01
Budget End
2013-09-14
Support Year
5
Fiscal Year
2012
Total Cost
$2,020,247
Indirect Cost
$659,811
Name
University of Nebraska Medical Center
Department
Other Basic Sciences
Type
Schools of Pharmacy
DUNS #
168559177
City
Omaha
State
NE
Country
United States
Zip Code
68198
Saraswathi, Viswanathan; Ganesan, Murali; Perriotte-Olson, Curtis et al. (2016) Nanoformulated copper/zinc superoxide dismutase attenuates vascular cell activation and aortic inflammation in obesity. Biochem Biophys Res Commun 469:495-500
Mahajan, Vivek; Gaymalov, Zagit; Alakhova, Daria et al. (2016) Horizontal gene transfer from macrophages to ischemic muscles upon delivery of naked DNA with Pluronic block copolymers. Biomaterials 75:58-70
Xie, Ying; Wehrkamp, Cody J; Li, Jing et al. (2016) Delivery of miR-200c Mimic with Poly(amido amine) CXCR4 Antagonists for Combined Inhibition of Cholangiocarcinoma Cell Invasiveness. Mol Pharm 13:1073-80
Fan, Wei; Shi, Wen; Zhang, Wenting et al. (2016) Cathepsin S-cleavable, multi-block HPMA copolymers for improved SPECT/CT imaging of pancreatic cancer. Biomaterials 103:101-15
Perriotte-Olson, Curtis; Adi, Nikhil; Manickam, Devika S et al. (2016) Nanoformulated copper/zinc superoxide dismutase reduces adipose inflammation in obesity. Obesity (Silver Spring) 24:148-56
Jiang, Jiang; Li, Zhuoran; Wang, Hongjun et al. (2016) Expanded 3D Nanofiber Scaffolds: Cell Penetration, Neovascularization, and Host Response. Adv Healthc Mater 5:2993-3003
Raja, Srikumar M; Desale, Swapnil S; Mohapatra, Bhopal et al. (2016) Marked enhancement of lysosomal targeting and efficacy of ErbB2-targeted drug delivery by HSP90 inhibition. Oncotarget 7:10522-35
Mahajan, Vivek; Gaymalov, Zagit; Alakhova, Daria et al. (2016) Data on macrophage mediated muscle transfection upon delivery of naked plasmid DNA with block copolymers. Data Brief 7:1269-82
Jiang, Yuhang; Brynskikh, Anna M; S-Manickam, Devika et al. (2015) SOD1 nanozyme salvages ischemic brain by locally protecting cerebral vasculature. J Control Release 213:36-44
Wakaskar, Rajesh R; Bathena, Sai Praneeth R; Tallapaka, Shailendra B et al. (2015) Peripherally cross-linking the shell of core-shell polymer micelles decreases premature release of physically loaded combretastatin A4 in whole blood and increases its mean residence time and subsequent potency against primary murine breast tumors after I Pharm Res 32:1028-44

Showing the most recent 10 out of 59 publications