The Nebraska Center for Nanomedicine (NCN), a Center of Biomedical Research Excellence (COBRE), integrates and supports interdisciplinary, multi-project, multi-departmental research in the field of nanomedicine. The Administrative Core serves as a centralized governing source for the COBRE NCN and provides framework for supporting the unique features of the NCN: funding of the junior investigators, mentoring, and organization of Center activities. The Administrative Core includes the Center Director, Center Manager, Biomedical Informatics and Biostatistics support group, and the Mentors. The goals and essential services of the Administrative Core are summarized in the following specific aims: Provide scientific leadership and an administrative structure that fosters communication and collaboration among NCN members. Oversee and coordinate the research activities of the projects and cores;maintain a vigorous mentoring program to help establish junior scientists as independent investigators, and facilitate selection and funding of new research projects. ? Coordinate an effective internal and external committee structure to provide expertise, advice and oversight of the program, and ensure effective communication between members of the NCN and advisory committees. Coordinate formative and summative evaluation processes. Assist the collection, handling, and analysis of data from projects and research cores through the Biomedical Informatics and Biostatistics support group and maintain the shared web resources. Maintain the fiscal management of the Center;implement a data sharing plan, and maintain the communication with and submit the appropriate progress reports to the NIH.

Public Health Relevance

The Administrative Core provides a framework for supporting the unique features of the NCN COBRE as well as more routine administrative tasks associated with a large, diverse, multiple projects program.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103480-07
Application #
8730196
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
7
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Nebraska Medical Center
Department
Type
DUNS #
City
Omaha
State
NE
Country
United States
Zip Code
68198
Saraswathi, Viswanathan; Ganesan, Murali; Perriotte-Olson, Curtis et al. (2016) Nanoformulated copper/zinc superoxide dismutase attenuates vascular cell activation and aortic inflammation in obesity. Biochem Biophys Res Commun 469:495-500
Mahajan, Vivek; Gaymalov, Zagit; Alakhova, Daria et al. (2016) Horizontal gene transfer from macrophages to ischemic muscles upon delivery of naked DNA with Pluronic block copolymers. Biomaterials 75:58-70
Xie, Ying; Wehrkamp, Cody J; Li, Jing et al. (2016) Delivery of miR-200c Mimic with Poly(amido amine) CXCR4 Antagonists for Combined Inhibition of Cholangiocarcinoma Cell Invasiveness. Mol Pharm 13:1073-80
Fan, Wei; Shi, Wen; Zhang, Wenting et al. (2016) Cathepsin S-cleavable, multi-block HPMA copolymers for improved SPECT/CT imaging of pancreatic cancer. Biomaterials 103:101-15
Perriotte-Olson, Curtis; Adi, Nikhil; Manickam, Devika S et al. (2016) Nanoformulated copper/zinc superoxide dismutase reduces adipose inflammation in obesity. Obesity (Silver Spring) 24:148-56
Jiang, Jiang; Li, Zhuoran; Wang, Hongjun et al. (2016) Expanded 3D Nanofiber Scaffolds: Cell Penetration, Neovascularization, and Host Response. Adv Healthc Mater 5:2993-3003
Raja, Srikumar M; Desale, Swapnil S; Mohapatra, Bhopal et al. (2016) Marked enhancement of lysosomal targeting and efficacy of ErbB2-targeted drug delivery by HSP90 inhibition. Oncotarget 7:10522-35
Mahajan, Vivek; Gaymalov, Zagit; Alakhova, Daria et al. (2016) Data on macrophage mediated muscle transfection upon delivery of naked plasmid DNA with block copolymers. Data Brief 7:1269-82
Jiang, Yuhang; Brynskikh, Anna M; S-Manickam, Devika et al. (2015) SOD1 nanozyme salvages ischemic brain by locally protecting cerebral vasculature. J Control Release 213:36-44
Wakaskar, Rajesh R; Bathena, Sai Praneeth R; Tallapaka, Shailendra B et al. (2015) Peripherally cross-linking the shell of core-shell polymer micelles decreases premature release of physically loaded combretastatin A4 in whole blood and increases its mean residence time and subsequent potency against primary murine breast tumors after I Pharm Res 32:1028-44

Showing the most recent 10 out of 59 publications