The Nebraska Center for Nanomedicine (NCN), a Center of Biomedical Research Excellence (COBRE), integrates and supports interdisciplinary, multi-project, multi-departmental research in the field of nanomedicine. The Administrative Core serves as a centralized governing source for the COBRE NCN and provides framework for supporting the unique features of the NCN: funding of the junior investigators, mentoring, and organization of Center activities. The Administrative Core includes the Center Director, Center Manager, Biomedical Informatics and Biostatistics support group, and the Mentors. The goals and essential services of the Administrative Core are summarized in the following specific aims: Provide scientific leadership and an administrative structure that fosters communication and collaboration among NCN members. Oversee and coordinate the research activities of the projects and cores;maintain a vigorous mentoring program to help establish junior scientists as independent investigators, and facilitate selection and funding of new research projects. ? Coordinate an effective internal and external committee structure to provide expertise, advice and oversight of the program, and ensure effective communication between members of the NCN and advisory committees. Coordinate formative and summative evaluation processes. Assist the collection, handling, and analysis of data from projects and research cores through the Biomedical Informatics and Biostatistics support group and maintain the shared web resources. Maintain the fiscal management of the Center;implement a data sharing plan, and maintain the communication with and submit the appropriate progress reports to the NIH.

Public Health Relevance

The Administrative Core provides a framework for supporting the unique features of the NCN COBRE as well as more routine administrative tasks associated with a large, diverse, multiple projects program.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103480-07
Application #
8730196
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
7
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Nebraska Medical Center
Department
Type
DUNS #
City
Omaha
State
NE
Country
United States
Zip Code
68198
Soni, Kruti S; Lei, Fan; Desale, Swapnil S et al. (2017) Tuning polypeptide-based micellar carrier for efficient combination therapy of ErbB2-positive breast cancer. J Control Release 264:276-287
Karuturi, Bala V K; Tallapaka, Shailendra B; Yeapuri, Pravin et al. (2017) Encapsulation of an EP67-Conjugated CTL Peptide Vaccine in Nanoscale Biodegradable Particles Increases the Efficacy of Respiratory Immunization and Affects the Magnitude and Memory Subsets of Vaccine-Generated Mucosal and Systemic CD8+ T Cells in a Diamet Mol Pharm 14:1469-1481
Fan, Wei; Zhang, Wenting; Jia, Yinnong et al. (2017) Investigation into the Biological Impact of Block Size on Cathepsin S-Degradable HPMA Copolymers. Mol Pharm 14:1405-1417
Chen, Shixuan; Ge, Liangpeng; Mueller, Aubrey et al. (2017) Twisting electrospun nanofiber fine strips into functional sutures for sustained co-delivery of gentamicin and silver. Nanomedicine 13:1435-1445
Chen, Shixuan; Ge, Liangpeng; Gombart, Adrian F et al. (2017) Nanofiber-based sutures induce endogenous antimicrobial peptide. Nanomedicine (Lond) 12:2597-2609
Jiang, Jiang; Chen, Shixuan; Wang, Hongjun et al. (2017) CO2-expanded nanofiber scaffolds maintain activity of encapsulated bioactive materials and promote cellular infiltration and positive host response. Acta Biomater :
Shrishrimal, Shashank; Kosmacek, Elizabeth A; Chatterjee, Arpita et al. (2017) The SOD Mimic, MnTE-2-PyP, Protects from Chronic Fibrosis and Inflammation in Irradiated Normal Pelvic Tissues. Antioxidants (Basel) 6:
Souchek, Joshua J; Davis, Amanda L; Hill, Tanner K et al. (2017) Combination Treatment with Orlistat-Containing Nanoparticles and Taxanes Is Synergistic and Enhances Microtubule Stability in Taxane-Resistant Prostate Cancer Cells. Mol Cancer Ther 16:1819-1830
Smolsky, Joseph; Kaur, Sukhwinder; Hayashi, Chihiro et al. (2017) Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers. Biosensors (Basel) 7:
Lakshmanan, Imayavaramban; Salfity, Shereen; Seshacharyulu, Parthasarathy et al. (2017) MUC16 Regulates TSPYL5 for Lung Cancer Cell Growth and Chemoresistance by Suppressing p53. Clin Cancer Res 23:3906-3917

Showing the most recent 10 out of 74 publications