Nephritis, a chronic inflammatory kidney disease, is a leading cause of mortality in lupus patients. Current therapy for lupus nephritis includes corticosteroids, such as dexamethasone (Dex), which are often associated with significant toxicity that results from systemic exposure to the drugs and off target effects. To address this problem, we propose to develop kidney-targeted corticosteroid therapy, which will allow sufficient Dex concentration in the kidney for inflammation resolution, while limiting systemic exposure to corticosteroids. Our long-term goal is to develop novel therapies for lupus. The objective of this application is to demonstrate that molecularly targeted copolymer-conjugated Dex will provide safe but effective therapy for lupus by targeted delivery and local retention of the anti-inflammatory drug Dex to the kidney. Our central hypothesis is that molecularly targeted copolymer conjugated Dex will be nephrotropic to lupus-affected kidneys with limited systemic distribution and will ameliorate renal dysfunction and increase lifespan of lupusprone mice. This hypothesis is based upon our initial studies showing that copolymer conjugated Dex shows enhanced uptake by the inflamed kidney, particularly in the proximal tubule epithelial cells. Furthermore, we have strong preliminary data that demonstrate that copolymer conjugated Dex reduces nephritis and extends lifespan in lupus mice without inducing loss of bone mineral density. However, some side effects remain and thus further refinement of this kidney targeted therapy is needed to maximize therapeutic benefits and eliminate residual off target effects. However, our lack of knowledge about the cellular mechanisms involved in renal uptake of copolymer conjugated Dex hampers our progress toward this goal. Therefore, we propose in vitro and in vivo studies to determine the mechanisms involved in cellular uptake and processing of copolymer conjugated Dex in the kidney. We will also use peptides to more effectively target copolymer conjugated Dex to the proximal tubule epithelial cells and to promote more efficient cellular uptake. The impact of peptide targeting on the safety and efficacy of copolymer conjugated Dex will also be examined.

Public Health Relevance

There is a need for improved therapy for nephritis, the leading cause of renal failure and mortality in lupus patients. Current therapy involves corticosteroids, which cause major toxicity due to systemic exposure. Our development of kidney-targeted corticosteroid therapy, which effectively treat nephritis while limiting systemic exposure to corticosteroids, represents a major leap forward in the treatment of lupus nephritis.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103480-07
Application #
8730201
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
7
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Nebraska Medical Center
Department
Type
DUNS #
City
Omaha
State
NE
Country
United States
Zip Code
68198
Saraswathi, Viswanathan; Ganesan, Murali; Perriotte-Olson, Curtis et al. (2016) Nanoformulated copper/zinc superoxide dismutase attenuates vascular cell activation and aortic inflammation in obesity. Biochem Biophys Res Commun 469:495-500
Mahajan, Vivek; Gaymalov, Zagit; Alakhova, Daria et al. (2016) Horizontal gene transfer from macrophages to ischemic muscles upon delivery of naked DNA with Pluronic block copolymers. Biomaterials 75:58-70
Xie, Ying; Wehrkamp, Cody J; Li, Jing et al. (2016) Delivery of miR-200c Mimic with Poly(amido amine) CXCR4 Antagonists for Combined Inhibition of Cholangiocarcinoma Cell Invasiveness. Mol Pharm 13:1073-80
Fan, Wei; Shi, Wen; Zhang, Wenting et al. (2016) Cathepsin S-cleavable, multi-block HPMA copolymers for improved SPECT/CT imaging of pancreatic cancer. Biomaterials 103:101-15
Perriotte-Olson, Curtis; Adi, Nikhil; Manickam, Devika S et al. (2016) Nanoformulated copper/zinc superoxide dismutase reduces adipose inflammation in obesity. Obesity (Silver Spring) 24:148-56
Jiang, Jiang; Li, Zhuoran; Wang, Hongjun et al. (2016) Expanded 3D Nanofiber Scaffolds: Cell Penetration, Neovascularization, and Host Response. Adv Healthc Mater 5:2993-3003
Raja, Srikumar M; Desale, Swapnil S; Mohapatra, Bhopal et al. (2016) Marked enhancement of lysosomal targeting and efficacy of ErbB2-targeted drug delivery by HSP90 inhibition. Oncotarget 7:10522-35
Mahajan, Vivek; Gaymalov, Zagit; Alakhova, Daria et al. (2016) Data on macrophage mediated muscle transfection upon delivery of naked plasmid DNA with block copolymers. Data Brief 7:1269-82
Jiang, Yuhang; Brynskikh, Anna M; S-Manickam, Devika et al. (2015) SOD1 nanozyme salvages ischemic brain by locally protecting cerebral vasculature. J Control Release 213:36-44
Wakaskar, Rajesh R; Bathena, Sai Praneeth R; Tallapaka, Shailendra B et al. (2015) Peripherally cross-linking the shell of core-shell polymer micelles decreases premature release of physically loaded combretastatin A4 in whole blood and increases its mean residence time and subsequent potency against primary murine breast tumors after I Pharm Res 32:1028-44

Showing the most recent 10 out of 59 publications