Overarching goal of the Center is to understand the mechanisms of pathophysiology of diabetes and obesity and their cardiovascular complications. The Pathology and Bio-analytics Core is an integral part ofthe Center and will play a key role in the evolution of COBRE-funded projects. The Core will render services for rigorous and comprehensive pathological analysis of diabetic specimens. It will provide intellectual input with experimental design and state-of-the-art technical expertise to address the needs of investigators. The Core consists of a group of outstanding scientists with expertise in cardiovascular physiology, pathology and analytical biochemistry. Director ofthe Core, Dr. Sanjay Srivastava more than twenty years of research experience in analytical biochemistry and pathology, and vascular inflammation, atherosclerosis and diabetes. He will oversee all the Core operations and will work closely with junior investigators to teach them principles of histology, chromatography and mass spectrometry. Dr Srivastava will also help the COBRE investigators with quantification and characterization of atherosclerotic lesions. Dr. Michael Merchant, coinvestigator in the Core has extensive experience in analytical biochemistry and will assist the COBRE investigators with proteomics analyses. Drs. Srivastava and Merchant will provide hands on training to junior investigators for various histology and bio-analytical assays. The training acquired at the Core will facilitate them to grow as scientists and expand their repertoire of technical skills. The Core is equipped with state-ofthe- art pathology and analytical biochemistry equipment and is located in the Delia Baxter Building. In addition to address the current requirements of the COBRE projects, the Core will continue to expand its knowledgebase and technical expertise to satisfy the future needs of the Center. Long term goal of the Core is to become a fiscally independent entity capable of providing cutting-edge pathology and bio-analytical services to researchers interested in diabetes and cardiovascular pathophysiology. Continued excellence in pathological analyses will foster collaborations which will not only help the Core financially, but will also advance the field in combatting diabetic complications.

Public Health Relevance

The Pathology and Bio-analytics Core of the Center will provide technical expertise in the pathological examination and quantification of various analytes in diabetic tissues. The Core will train junior investigators with histological assessment and biochemical analyses of diabetic tissues and tease out the biochemical mechanisms associated with the onset of diabetes and obesity and their cardiovascular complications.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Louisville
United States
Zip Code
Barnett, Rebecca Elise; Conklin, Daniel J; Ryan, Lindsey et al. (2016) Anti-inflammatory effects of miR-21 in the macrophage response to peritonitis. J Leukoc Biol 99:361-71
Khan, Abdur Rahman; Farid, Talha A; Pathan, Asif et al. (2016) Impact of Cell Therapy on Myocardial Perfusion and Cardiovascular Outcomes in Patients With Angina Refractory to Medical Therapy: A Systematic Review and Meta-Analysis. Circ Res 118:984-93
Salabei, Joshua K; Lorkiewicz, Pawel K; Mehra, Parul et al. (2016) Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells. J Biol Chem 291:13634-48
DeFilippis, Andrew P; Chernyavskiy, Ilya; Amraotkar, Alok R et al. (2016) Circulating levels of plasminogen and oxidized phospholipids bound to plasminogen distinguish between atherothrombotic and non-atherothrombotic myocardial infarction. J Thromb Thrombolysis 42:61-76
Conklin, Daniel J; Haberzettl, Petra; Jagatheesan, Ganapathy et al. (2016) Role of TRPA1 in acute cardiopulmonary toxicity of inhaled acrolein. Toxicol Appl Pharmacol :
Conklin, Daniel J (2016) Acute cardiopulmonary toxicity of inhaled aldehydes: role of TRPA1. Ann N Y Acad Sci 1374:59-67
Finch, Jordan; Conklin, Daniel J (2016) Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System. Cardiovasc Toxicol 16:260-75
Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni et al. (2016) Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis. Am J Physiol Heart Circ Physiol 310:H1423-38
(2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1-222
Zhang, Michael J; Sansbury, Brian E; Hellmann, Jason et al. (2016) Resolvin D2 Enhances Postischemic Revascularization While Resolving Inflammation. Circulation 134:666-80

Showing the most recent 10 out of 64 publications