Obesity is a major public health problem affecting over one third of adults in the United States and one in five children. Obesity is related to an increased risk of cardiovascular mortality, which may in part be mediated through a direct effect on the heart leading to dysfunction. However, the time course over which obesity leads to cardiac dysfuncfion, the underlying mechanisms of myocardial dysfunction in obesity, and potential treatments have not been fully elucidated. Our preliminary data ufilizing cardiac magnefic resonance imaging (MRI) show abnormalifies in the magnitude of contracfion, synchrony of contraction, and myocardial mass in the hearts of mice fed a high-fat Western diet. The objective of this project is to define the time course over which this dysfunction occurs in mice, evaluate the role of hypertension in the development of this dysfunction, and to translate this work into humans by determining whether children in our pediatric obesity clinic have evidence of cardiac dysfunction. This project has 3 specific aims as follows: 1) Determine the time course over which myocardial dysfunction develops in mice fed a high-fat Western diet. We will quantify advanced measures of cardiac function assessing mass, contraction and relaxation and synchrony overtime in a longitudinal study using magnetic resonance imaging. 2) Determine the effect of anti-hypertensive therapy on the development of hypertrophy and cardiac dysfunction in mice fed a high-fat Western diet. Mice on a high-fat Western diet develop obesity-related hypertension that is reversible with anti-hypertensive therapy. However, the effect of anti-hypertensive therapy on cardiac function in obese mice has not been studied and may elucidate underiying mechanisms. We will compare cardiac function measured in the'mice on a high-fat Western diet in specific aim 1 to a group of mice on a high-fat Western diet and hydralazine. 3) Quantify cardiac function in children with obesity using advanced MRI. State-of-the-art technology at the University of Kentucky enables us to directly translate our findings in mice into our pediatric obesity clinic with over 800 patients. The effect of obesity on myocardial function in children is largely unknown.

Public Health Relevance

Obesity affects over one third of adults in the United States and one in five children. The objective of this project is to understand the effects of obesity on the function of the heart using advanced magnetic resonance imaging (MRI) of the hearts of both mice and humans. Part of this project will also investigate the specific role of blood pressure medications on helping to protect the heart from the effects of obesity.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-TWD-Y)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kentucky
United States
Zip Code
Song, Eun Suk; Jang, HyeIn; Guo, Hou-Fu et al. (2017) Inositol phosphates and phosphoinositides activate insulin-degrading enzyme, while phosphoinositides also mediate binding to endosomes. Proc Natl Acad Sci U S A 114:E2826-E2835
Bradford, Emily M; Ryu, Stacy H; Singh, Ajay Pal et al. (2017) Epithelial TNF Receptor Signaling Promotes Mucosal Repair in Inflammatory Bowel Disease. J Immunol 199:1886-1897
Pumphrey, Ashley L; Ye, Shaojing; Yang, Zhengshi et al. (2017) Cardiac Chemical Exchange Saturation Transfer MR Imaging Tracking of Cell Survival or Rejection in Mouse Models of Cell Therapy. Radiology 282:131-138
Muniappan, Latha; Javidan, Aida; Jiang, Weihua et al. (2017) Calpain Inhibition Attenuates Adipose Tissue Inflammation and Fibrosis in Diet-induced Obese Mice. Sci Rep 7:14398
Adamiak, M; Abdelbaset-Ismail, A; Suszynska, M et al. (2017) Novel evidence that the mannan-binding lectin pathway of complement activation plays a pivotal role in triggering mobilization of hematopoietic stem/progenitor cells by activation of both the complement and coagulation cascades. Leukemia 31:262-265
Adamiak, Mateusz; Chelvarajan, Lakshman; Lynch, Kevin R et al. (2017) Mobilization studies in mice deficient in sphingosine kinase 2 support a crucial role of the plasma level of sphingosine-1-phosphate in the egress of hematopoietic stem progenitor cells. Oncotarget 8:65588-65600
Wysoczynski, Marcin; Adamiak, Mateusz; Suszynska, Malwina et al. (2017) Poor Mobilization in T-Cell-Deficient Nude Mice Is Explained by Defective Activation of Granulocytes and Monocytes. Cell Transplant 26:83-93
Brown, J Mark; Temel, Ryan E; Graf, Gregory A (2017) Para-bile-osis Establishes a Role for Nonbiliary Macrophage to Feces Reverse Cholesterol Transport. Arterioscler Thromb Vasc Biol 37:738-739
Akenhead, Michael L; Fukuda, Shunichi; Schmid-Schönbein, Geert W et al. (2017) Fluid shear-induced cathepsin B release in the control of Mac1-dependent neutrophil adhesion. J Leukoc Biol 102:117-126
Wang, Yu; Shoemaker, Robin; Powell, David et al. (2017) Differential effects of Mas receptor deficiency on cardiac function and blood pressure in obese male and female mice. Am J Physiol Heart Circ Physiol 312:H459-H468

Showing the most recent 10 out of 197 publications