Sexually transmitted infections (STI) with Chlamydia trachomatis are the most common bacterial STI in both the United States and worldwide and represent a significant public health concern. At present, there are no biomarkers to reliably predict potentially devastating Chlamydia-associated reproductive complications, such as infertility and ectopic pregnancy;therefore, development of a chlamydial vaccine is a high priority. The traditional definition of """"""""protective immunity"""""""" following chlamydial infection or vaccination includes reduced bacterial shedding, shortened duration of infection, and diminished chronic tissue damage. However, the immunologic correlates of protective immunity are less well-defined and have generally included generation of IgG antibody and a robust CD4+ Th1 response although the latter has also been implicated in pathology and may not be adequate as a single read-out for immunologic efficacy. The overall goal of this project is to define the immunologic and cellular responses that contribute to effective generation of Chlamydia muridarum-specific immunologic memory. We hypothesize that the CD4+ central and effector memory phenotype elicited following C. muridarum Infection or immunization is a critical determinant of protective immunity and/or pathology and, as a corollary, that altered IL-23/Th17 responses may result in inadequate CD4+ T-cell memory responses. Employing a series of in vivo experiments in an established mouse model, our hypothesis will be tested by the following Specific Aims: 1) Characterize the cellular and immunologic responses associated with the development of protective CD4+ memory T-cell responses following Chlamydia muridarum genital tract infection. 2) Evaluate the contribution of the IL-23/Th17 response in generation of effective CD4+ T-cell central and effector memory responses to C. muridarum genital tract infection. 3) Determine if immunization with killed organisms elicits a different memory response than natural infection. Information gained from the proposed studies will advance the Project Leader's immediate and long-term career objectives to expand her technical and analytical research skills, develop biomarkers for adverse disease outcomes following Chlamydia STI, and translate findings in the basic immunology laboratory into clinically relevant prevention and intervention strategies for STI. The Project Leader will integrate enthusiastic mentorship with numerous institutional resources to reach her goal of becoming an independent investigator with an established scientific niche in genital tract mucosal immunology.

Public Health Relevance

Sexually transmitted Chlamydia trachomatis infections are a significant public health problem due to their high frequency and risk of reproductive complications, including infertility and ectopic pregnancy. This project characterizes the immune response to chlamydial infection and immunization to determine the most effective regimens to protect from infection and chronic chlamydial disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103625-03
Application #
8652485
Study Section
Special Emphasis Panel (ZRR1)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Arkansas for Medical Sciences
Department
Type
DUNS #
City
Little Rock
State
AR
Country
United States
Zip Code
72202
Kothari, Anisha; Hittelman, Walter N; Chambers, Timothy C (2016) Cell Cycle-Dependent Mechanisms Underlie Vincristine-Induced Death of Primary Acute Lymphoblastic Leukemia Cells. Cancer Res 76:3553-61
Sengupta, Deepanwita; Tackett, Alan J (2016) Proteomic Findings in Melanoma. J Proteomics Bioinform 9:
Byrd, Alicia K; Zybailov, Boris L; Maddukuri, Leena et al. (2016) Evidence That G-quadruplex DNA Accumulates in the Cytoplasm and Participates in Stress Granule Assembly in Response to Oxidative Stress. J Biol Chem 291:18041-57
Fujiwara, T; Zhou, J; Ye, S et al. (2016) RNA-binding protein Musashi2 induced by RANKL is critical for osteoclast survival. Cell Death Dis 7:e2300
Jolly, Lee Ann; Novitskiy, Sergey; Owens, Phillip et al. (2016) Fibroblast-Mediated Collagen Remodeling Within the Tumor Microenvironment Facilitates Progression of Thyroid Cancers Driven by BrafV600E and Pten Loss. Cancer Res 76:1804-13
Liem, Jason; Liu, Jia (2016) Stress Beyond Translation: Poxviruses and More. Viruses 8:
Atanassov, Boyko S; Mohan, Ryan D; Lan, Xianjiang et al. (2016) ATXN7L3 and ENY2 Coordinate Activity of Multiple H2B Deubiquitinases Important for Cellular Proliferation and Tumor Growth. Mol Cell 62:558-71
Atwood, Danielle N; Beenken, Karen E; Lantz, Tamara L et al. (2016) Regulatory Mutations Impacting Antibiotic Susceptibility in an Established Staphylococcus aureus Biofilm. Antimicrob Agents Chemother 60:1826-9
Sifford, Jeffrey M; Stahl, James A; Salinas, Eduardo et al. (2016) Murine Gammaherpesvirus 68 LANA and SOX Homologs Counteract ATM-Driven p53 Activity during Lytic Viral Replication. J Virol 90:2571-85
Byrum, Stephanie D; Burdine, Marie S; Orr, Lisa et al. (2016) A Quantitative Proteomic Analysis of Urine from Gamma-Irradiated Non-Human Primates. J Proteomics Bioinform 9:

Showing the most recent 10 out of 66 publications